

GEORGIA DOT RESEARCH PROJECT 16-13

FINAL REPORT

A New Vehicle Concept To Provide Better Rapid
Transit At Reduced Cost (Phase 1)

OFFICE OF PERFORMANCE-BASED
MANAGEMENT AND RESEARCH

15 KENNEDY DRIVE

FOREST PARK, GA 30297

GDOT Research Project. 16-13

Final Report

A NEW VEHICLE CONCEPT TO PROVIDE BETTER RAPID TRANSIT AT REDUCED COST
(PHASE 1)

By
Bill Diong, Ph.D.; Professor of Electrical Engineering

Ying Wang, Ph.D.; Associate Professor of Mechatronics Engineering
Jidong Yang, Ph.D.; Associate Professor of Civil Engineering

Kennesaw State University Research & Service Foundation

Contract with

Georgia Department of Transportation

In cooperation with

U.S. Department of Transportation
Federal Highway Administration

October 2018

The contents of this report reflect the views of the authors who are responsible for the
facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the Georgia Department of Transportation or of the
Federal Highway Administration. This report does not constitute a standard, specification,
or regulation.

TECHNICAL REPORT STANDARD TITLE PAGE
1.Report No.:
 FHWA-GA-RP-16-13

2. Government Accession No.:

3. Recipient's Catalog No.:

4. Title and Subtitle:
A New Vehicle Concept to Provide Better Rapid
Transit at Reduced Cost (Phase 1)

5. Report Date:
 October 2018
6. Performing Organization Code:

7. Author(s):
Bill Diong, PhD; Ying Wang, PhD; and Jidong
Yang, PhD

8. Performing Organ. Report No.:
 16-13

9. Performing Organization Name and Address:
Kennesaw State University Research & Service
Foundation
1000 Chastain Road
Mail Drop 0111
Kennesaw, Georgia 30144-5591

10. Work Unit No.:

11. Contract or Grant No.:
 0015121

12. Sponsoring Agency Name and Address:
 Georgia Department of Transportation
 Office of Research
 15 Kennedy Drive
 Forest Park, GA 30297-2534

13. Type of Report and Period Covered:
 Final; June 2016–October 2018
14. Sponsoring Agency Code:

15. Supplementary Notes:
 Prepared in cooperation with the U.S. Department of Transportation, Federal Highway
Administration.
16. Abstract:
 A bus rapid transit (BRT) system is a mass transit system that uses rubber-tired vehicles operating in
dedicated guideways, high-occupancy vehicle lanes, and/or mixed traffic. These systems typically also
have a limited number of stops and use signal priority queue jumper lanes in order to increase
operational efficiency and reliability. However, a cost-benefit analysis of a BRT system, in its present
form, is not unequivocally favorable. To tilt such analysis more in its favor, this paper describes the
proposed Slim Modular Flexible Electric Bus Rapid Transit (SMFe-BRT) system concept, which
improves upon the existing BRT concept in several key areas. Firstly, the SMFe-BRT vehicle will
comprise a lead module, with a human driver, plus one or more physically separate follower modules
that track the lead module’s movements in an autonomous fashion. Secondly, the bodies of these
modules will be slimmer, which allow the vehicles to operate in narrower lanes, thereby yielding
substantial cost savings in its implementation and operation. This report presents details regarding the
design and prototyping of this SMFe-BRT vehicle’s key subsystems, resulting in a prototype lead
module and a prototype follower module that can each travel at straight-line speeds exceeding 15 mph
and cornering speeds exceeding 4 mph. In addition, this report describes the development of a leader-
follower control algorithm that works properly in an indoor environment, demonstrating module
straight-line tracking up to 4 mph for time intervals of several seconds long. However, the researchers
encountered some challenges demonstrating proper module following in the outdoor tests. Finally, this
report presents a feasibility study evaluating SMFe-BRT against the traditional BRT based on multiple
criteria, including transport efficiency, environmental impacts, and finances. The study shows that the
SMFe-BRT offers additional benefits in the context of both freeway and arterial operations, and is
generally preferred to the traditional BRT.
17. Key Words:
Electric Bus; Bus Rapid Transit; Semi-Autonomous;
Module following

18. Distribution Statement:

19. Security Classification
 (of this report):
 Unclassified

20. Security
Classification
 (of this page):
 Unclassified

21. Number of Pages:
 177

22. Price:

Form DOT 1700.7 (8-69)

ii

TABLE OF CONTENTS

 Page

LIST OF TABLES .. iv

LIST OF FIGURES .. v

EXECUTIVE SUMMARY ... vii

ACKNOWLEDGMENTS .. x

1 INTRODUCTION ... 1

1.1 Motivation .. 1

1.2 Review of State of the Art .. 2

1.3 Objectives .. 4

2 PROCEDURE ... 5

2.1 Task Set 1. Feasibility Study of the SMFe-BRT .. 5
2.2 Task Set 2. Design an SMFe-bus to Provide Comparable Service to the Cobb County

BRT Bus .. 6

2.3 Task Set 3. Develop the Hardware and Software Needed to Demonstrate the Concept of
Virtual Coupling (Module-following) for Two Prototype SMFe-bus Modules 8

3 TASK SET 2: Design and Prototyping of an SMFe-bus ... 11

3.1 State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion and Steering Systems 11

3.2 Vehicle and Service Specifications Proposed for Cobb County’s BRT (as example) 13

3.3 Lab Prototype of SMFe-bus Vehicle .. 16
3.4 Design Specifications for an SMFe-bus Propulsion System that Can Provide Service

Matching That Proposed for the Cobb County BRT .. 30

3.5 Impact of a Fully Electric Propulsion System on Operations and Cost 31

4 TASK SET 3: Development and Demonstration of Module-following Control 33

4.1 Review Literature and Practices ... 33

4.2 Develop Computer Vision Algorithms for Object Recognition ... 37

4.3 Develop the Communication Software for the Low-level Vehicle Control System 39
4.4 Develop Machine Learning Algorithms for Modular Tracking ... 40

4.5 Field Test and Improvement .. 48

5 TASK SET 1: Feasibility (Cost–Benefit) Study of the SMFe-BRT Concept 53

5.1 Motivation .. 53

5.2 Objectives and Overview ... 54

iii

5.3 Review of Literature .. 60

5.4 Methodology .. 70

6 FINDINGS/RESULTS .. 85

6.1 Findings from Task 2 ... 85

6.2 Findings from Task 3 ... 85
6.3 Findings from Task 1 ... 85

7 CONCLUSIONS ... 95

8 RECOMMENDATIONS ... 99

9 REFERENCES .. 101

10 APPENDICES ... 109

10.1 Appendix A—Low-level Python Programs ... 111

10.2 Appendix B—High-Level C++ Program ... 145

iv

LIST OF TABLES

Table Page

1. Comparison of Several Key Features of Proposed SMFe-bus to the Proterra FC Bus 32

2. The Training Samples of the Neural Network .. 43

3. The Effect of BRT Service on Transit Ridership .. 62

4. Observed Occupancy by Lane, Spring 2012, PM ... 63

5. The Preference Order Using Both Economic and AHP Analyses 67

6. Priority Profile ... 70

7. Number of Modules for SMFe Operations .. 73

8. AHP Priority Profile .. 80

9. Summary of Study Scenarios .. 86

10. Cobb Parkway – Network Results from Vissim Simulations.. 87

11. Cobb Parkway – Summary of Subcriteria Values ... 89

12. Cobb Parkway – Multicriteria Evaluation Results .. 90

13. GA 400 – Transit Results from Vissim SimulationsGA 400 – Transit Results from
Vissim Simulations.. 92

14. GA 400 – Summary of Subcriteria Values .. 92

15. GA 400 – Multicriteria Evaluation Results ... 93

v

LIST OF FIGURES

Figure Page

1. Proterra Bus ... 12

2. An In-Wheel Motor’s Main Components .. 12

3. Proposed Connect Cobb ART Corridor Showing Traffic Configuration and Stations 14

4. Proposed Typical Section on US 41 / Cobb Parkway ... 15

5. Comparing Specifications of Cobb County’s ART to Proposed SMFe-BRT 15

6. Lab Prototype of the SMFe-bus Vehicle with Two Modules: a Lead Module and a
Follower Module ... 17

7. The Selected 48 V 2 kW Brushless DC Hub Motor with 10-inch Tire Mounted on a
Stand for Testing ... 18

8. Rendering of the Designed Chassis for the Scaled Prototype ... 19

9. Connection Diagram for Motor Control Using RC System .. 20

10. Connection Schematic for the Electronics Board .. 22

11. “lmsc_v3_27.py” Flowchart .. 23

12. Steering Actuation System Diagram ... 25

13. Derivation of Equation Relating Steering Wheel Angle and Steering Actuator
Length .. 26

14. Derivation of Equation Relating Steering Actuator Length and Bit Value of ADC 27

15. Different Power and Charge Requirements as a Function of Bus Module Length 31

16. Charging Times for Different Levels of Charging .. 32

17. The Training Samples ... 37

18. The Total Loss of the SSD Network After 2000 Training Iterations 38

19. The Image Filtering Algorithm Using Depth Information .. 38

20. The Image Processing Results Using the Proposed Image Filtering Algorithm:
(a) Original Color Image; (b) Depth Image; (c) Image Mask; (d) Cropped Color
Image ... 39

vi

21. Leader–Follower Controller Using the Neural Network and Dual Kalman Filters for
Autonomous Vehicle Tracking.. 40

22. Architecture of the Neural Network Controller ... 42

23. Training Error of the Neural Network in 2000 Steps Using 50 Hidden Units 44

24. History of Selected Weights from the Input Layer to the Hidden Layer (w(1,10),
w(2,20), w(1,26), w(2,35), w(1,17)).. 45

25. History of Selected Weights from the Hidden Layer to the Output Layer (v(2,3),
v(30,4), v(18,1), v(10,2), v(36,3)) ... 45

26. Trajectories of the Two Vehicles .. 48

27. The x-coordinate of the Visual Sign on the Image Plane Extracted by the Cascade
Classifier Algorithm and Predicted by the First Kalman Filter ... 49

28. Distance between the Two Vehicles Measured by the Laser Scanner and Predicted
by the Second Kalman Filter ... 50

29. Translational Velocities of the Two Vehicles ... 51

30. Rotational Velocities of the Two Vehicles .. 51

31. Most Congested Highway Segments, 2012 ... 54

32. Proposed Connect Cobb Corridor Project ... 57

33. Proposed GA 400 Corridor Project ... 59

34. Commute Mode Share in Atlanta: 1990 to 2014 ... 61

35. Definition of the Importance of the Criteria, Results of Surveys Conducted in
Cracow .. 66

36. Typical Ring Barrier Diagram ... 71

37. Proposed Typical Section on Cobb Parkway – Center-Running Dedicated Guideway 74

38. Proposed Typical Section on Akers Mill Road – Side-Running Dedicated Guideway 74

39. Ring Barrier Signal Timing at the Intersetion of Cobb Pkwy and S. Marietta Pkwy 78

40. Hierarchical Structure of the Model .. 81

vii

EXECUTIVE SUMMARY

In the Atlanta metropolitan area, one of the fastest growing regions in the United States,

transportation ranks as the top concern of businesses and residents, while congestion relief has been

the top priority when allocating transportation funding. The area currently suffers from regularly

jammed highways and less than highly satisfactory public transit. One initiative to increase transit

ridership is bus rapid transit (BRT), such as that proposed by Cobb County at a cost of $500 million

(or almost $20 million per service mile). While BRT has many benefits and has been implemented

worldwide, this research project seeks to improve upon the basic model by means of a novel vehicle

concept called the Slim Modular Flexible Electric Bus (SMFe-bus). The key features of this vehicle

are: (1) narrower width (25–50% slimmer than a regular bus), requiring less right-of-way; (2) a

“lead” module with a driver cab, and a few driverless “follower” modules/cars trailing behind it;

(3) follower modules that can be easily attached and detached from the preceding module by way

of “virtual coupling” to meet varying passenger demand by time of day with optimized operations;

and (4) given the smaller size of the modules, each are self-propelled by in-wheel electric motors,

which will allow the modules to better negotiate turns while being more friendly to the environment

than fossil-fuel engines. The significance of this project is that it will lead to a system that costs

less than conventional BRT (by reducing right-of-way and construction costs), while providing an

equal or better level of service (LOS), and is more environmentally friendly.

This initial phase of the planned multi-stage research project was aimed at achieving the

following regarding the Slim Modular Flexible Electric Bus Rapid Transit (SMFe-BRT) concept

and the SMFe-bus vehicle:

1. Demonstrate a higher benefit-to-cost ratio for the SMFe-BRT approach compared to the

existing BRT approach (using Cobb County’s BRT proposal and Metropolitan Atlanta

Rapid Transit Authority’s [MARTA’s] GA 400 Transit Initiative’s BRT option as case

studies), and determine infrastructure design and operational feature requirements.

viii

2. Develop two-wheel-drive prototype lead and follower SMFe-bus modules with 3-hp

motors and 150-Ah battery pack, capable of speeds greater than 15 mph.

3. Demonstrate straight-line following by the two-module prototype SMFe-bus at 15 mph

within an 8-ft-wide path, and also proper tracking of 90-degree cornering at 4 mph within

the swept path of a 40-ft city transit bus.

After about two years of work, the following was accomplished:

• For the feasibility study, the SMFe-BRT was evaluated against the traditional BRT by

considering three major criteria: transport efficiency, environmental impact, and finances.

The results indicate that the SMFe-BRT provides additional benefits compared to the

traditional BRT for both freeway and arterial operations.

• The developed power and propulsion system for each of the lead and follower module

prototypes works properly when operated by a remote-control unit, for motor throttling

(forward and reverse), steering, regenerative braking, and emergency braking. Outdoor

tests indicate that the design of these prototypes yields performance that meets or exceeds

the technical objectives (mainly straight-line speed and cornering speed) proposed for their

power, propulsion, steering, and braking systems.

• The developed leader–follower controller works properly in an indoor environment. To

solve the measurement delay problem, a dual-Kalman-filter strategy and a multi-thread

programming technique were integrated into the control scheme. The indoor experimental

results using two autonomous vehicles validated the effectiveness and robustness of the

proposed approach, and demonstrated module straight-line tracking up to 4 mph for time

intervals of several seconds long. Meanwhile, the researchers observed some challenges in

the outdoor tests. In particular, a regular laser sensor cannot obtain correct measurements

in a bright outdoor environment.

ix

Hence, this project fully accomplished two of its three objectives, while partially reaching

the objective of demonstrating straight-line following by the two-module prototype SMFe-bus at

15 mph, and also proper tracking of 90-degree cornering at 4 mph. Therefore, substantial progress

has been made toward a better BRT system that costs less than conventional BRT (by reducing

right-of-way and construction costs), while providing an equal or better level of service, and is

more environmentally friendly.

x

ACKNOWLEDGMENTS

The work described in this report was made possible by a contract with the Department of

Transportation, State of Georgia, in cooperation with the U.S. Department of Transportation

Federal Highway Administration. The contents of this report reflect the view of the authors who

are responsible for the facts and accuracy of the data presented herein. The contents do not

necessarily reflect the official view or policies of the Department of Transportation, State of

Georgia, or the Federal Highway Administration. This report does not constitute a standard,

specification, or regulation.

1

1 INTRODUCTION

1.1 Motivation

The increasing demand for transportation versus the limited opportunities for increasing

capacity within many metropolitan areas calls for more effective use of the available capacity [1].

According to the Bureau of Transportation Statistics, U.S. Department of Transportation, 79.6% of

Georgia residents drove alone to work in 2013, while 10.3% participated in carpooling, and only

2.1% chose public transit (considerably less than the national average of 5.2%) [2]. In the Atlanta

metropolitan area (Metro Atlanta), a recent survey concluded that transportation ranks as the top

concern of its businesses and residents [3], while congestion relief has been the top priority when

allocating its transportation funding. The area currently suffers from regularly jammed highways

and less than highly satisfactory public transit options, even though about 12% of Atlanta residents

take transit regularly.

One well-known way to mitigate highway congestion is to increase transit ridership by way

of improved service, although this often requires an upgrade and/or expansion of existing transit

infrastructure. Bus rapid transit (BRT) has been adopted around the world, including by Pittsburgh,

Cleveland, Chicago, and New York City in the United States, Bogota in Colombia, Beijing in

China, Oslo in Norway, and Mexico City in Mexico [4–12], as another option for improving transit

service. It uses buses and dedicated lanes with limited stops to quickly transport passengers to their

destinations while offering a certain level of flexibility to meet the demand. However, given the

concerns about low transit ridership and increasing financial austerity in the U.S. public sector,

BRT is often viewed as not being very cost-effective because of the required dedicated lanes, which

often must be added to existing roadways. For example, establishing the BRT corridor proposed

by Cobb County, Georgia, to service the 25.3-mile (one direction) stretch from a station near

Kennesaw State University (KSU) in Kennesaw to the existing Metropolitan Atlanta Regional

Transit Authority (MARTA) Arts Center Station has been budgeted at about $500 million [13],

2

which is equivalent to a cost of almost $20 million per service mile, although that is still lower than

the cost associated with rail-based mass transit [14]. Furthermore, to meet increased passenger

demand, a shorter bus headway is currently the typical system response, which quickly drives up

the cost of operations. In nearby Gwinnett County, Georgia, interest in establishing BRT has

recently been voiced by the county commission chairman, and while county residents are also more

favorable toward transit now than any time during the past 45 years, there is still considerable

concern about its cost to taxpayers versus the expected benefits [15].

In light of those considerations, the research team proposed a Slim Modular Flexible Electric

Bus Rapid Transit (SMFe-BRT) system based on a novel vehicle concept. The key features of this

Slim Modular Flexible Electric Bus (SMFe-bus) vehicle are: (1) narrower width (about 25%

slimmer than a regular bus), requiring less right-of-way; (2) a “lead” module with a driver cab, and

a few driverless “follower” modules trailing behind the lead module, to better negotiate sharp turns;

(3) modules that are not physically coupled together so each follower module can be easily

detached from or attached to the preceding module by way of “virtual coupling” to better meet

varying passenger demand over the course of a day; and (4) given the semi-autonomous nature of

the modules, each is self-propelled by in-wheel electric motors, which will allow the modules to

more quickly change speed and direction while being more friendly to the environment than using

fossil-fuel engines.

1.2 Review of State of the Art

The research team performed a review regarding recent and current research related to bus

transportation, and the BRT concept in particular. The findings are summarized as follows:

Wang and Li proposed using the spare capacity of the dedicated BRT lanes by high-

occupancy vehicles (with more than three passengers) during peak traffic hours in Hangzhou,

China, to reduce traffic jams by better balancing usage of the available road resource [16].

Dodero et al. considered seven scenarios for Line 1 of the BRT system in Mexico City, Mexico, to

3

evaluate how operations and level of service (LOS) might improve as a result of operational

modifications, investments in infrastructure, and/or technology acquisitions [11]. They found that

better results were obtained from implementations requiring infrastructure investment than from

those involving operational modifications. But the impact of each considered implementation was

limited; only a few showed improvements on the analyzed indicators as large as 10%, testifying to

the difficulty of improving BRT service.

Recently, significant attention has been paid to developing systems that localize, monitor,

and track buses in public transportation networks [17–19]. GPS and vehicle-to-vehicle

communications are the main technological means to acquire and share such information. In

particular, the locations, speeds, and directions of buses can be shared among the bus drivers,

passengers, and the administrators of public transport systems. Through sharing that information

and synchronizing public transportation schedules, the passengers’ transfer time could be shortened

and the cost of public transport could be reduced.

Another trend in recent bus transportation research is to develop electric or hybrid electric

vehicles with low emission and low energy-consumption characteristics, and also improved

steering control [20–22]. In addition, various transportation modes (including commuter rails,

urban transit buses, electric trolley buses, and conventional diesel buses) have been compared in

terms of energy use and CO2 emissions [23], and also cost-to-benefit ratio [24]. The results from

these studies indicated that plug-in hybrid and electric city buses had the best potential to reduce

energy consumption and emissions while yielding a lower cost-to-benefit ratio than conventional

diesel buses.

Even more recently, Alam et al. described research, including simple road tests, on the

automatic control of platoons of freight trucks [25]. Their concept essentially uses a supervisory

controller to adjust the speed set-points of each truck’s cruise-control system to maintain adequate

vehicle separations; however, the drivers of each truck control their own vehicle’s steering. Related

to this work, research has been ongoing at KSU regarding the control of mobile robots [26].

4

In summary, this literature review did not uncover any recent or ongoing research that is

identical to this proposed work. However, related research supports the BRT concept as an

important and valuable alternative to other mass transit options in certain settings, with ongoing

efforts to advance its components to enhance passenger experience and improve the technical,

economic, and environmental performance of BRT systems [27]. Furthermore, prior research

indicates that more-electric propulsion systems are the best way to reduce fossil-fuel consumption

and harmful emissions.

1.3 Objectives

This initial phase of the planned multi-stage research project is aimed at achieving the

following objectives regarding the Slim Modular Flexible Electric Bus Rapid Transit concept and

the Slim Modular Flexible Electric Bus vehicle:

1. Demonstrate a higher benefit-to-cost ratio for the SMFe-BRT approach compared to the

existing BRT approach (using Cobb County’s BRT proposal and Metropolitan Atlanta

Rapid Transit Authority’s [MARTA’s] GA 400 Transit Initiative’s BRT option as case

studies), and determine infrastructure design and operational feature requirements.

2. Develop two-wheel-drive prototype lead and follower SMFe-bus modules with 3-hp

motors and 150-Ah battery pack, capable of speeds greater than 15 mph.

3. Demonstrate straight-line following by the two-module prototype SMFe-bus at 15 mph

within an 8-ft-wide path, and also proper tracking of 90-degree cornering at 4 mph within

the swept path of a 40-ft city transit bus.

5

2 PROCEDURE

To achieve the above-mentioned objectives, the project was carried out as three sets of tasks,

detailed as follows.

2.1 Task Set 1. Feasibility Study of the SMFe-BRT

2.1.1 Task 1.1 Review of Literature and Practices

The literature and practices related to the scope of this task will be reviewed and documented.

2.1.2 Task 1.2 Select Test Corridors and Gather Data

Several candidate corridors will be considered. The selection of the final study corridor will

depend on data availability and practical considerations of SMFe-BRT.

2.1.3 Task 1.3 Develop and Calibrate Simulation Model(s)

Simulation models will be built for the existing (base) condition. Data necessary for

calibrating the models will be gathered. Depending on data availability, the researchers expect that

certain data (e.g., traffic characteristics and roadway geometry) are required to be collected or

verified in the field. This calibration process is to ensure the models replicate the existing condition,

which will serve as a benchmark for evaluating any modified conditions through scenario analysis

as discussed in the next subtask.

2.1.4 Task 1.4 Analyze Scenarios

By implementing the SMFe-BRT concept in a simulated environment, a number of scenarios

will be considered and analyzed. The scenarios will consider the geometric requirements of the

slim bodies of the vehicles (e.g., dedicated narrower lanes, turning radii, access requirements, etc.)

and specific performance characteristics of SMFe-BRT (e.g., demand-responsiveness and signal

priority).

6

2.1.5 Task 1.5 Evaluate Feasibility

The feasibility of SMFe-BRT will be evaluated in a broader context, including its interactions

with other vehicles in the traffic stream, the number of stops and delays, fuel consumption, emission

reduction, energy saving, and life cycle cost.

2.2 Task Set 2. Design an SMFe-bus to Provide Comparable Service to the Cobb County
BRT Bus

2.2.1 Task 2.1 Document State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion
and Steering Systems

The literature and practices related to (hybrid) electric vehicle, i.e., (H)EV, propulsion and

steering will be reviewed and documented to guide the project forward.

2.2.2 Task 2.2 Determine Vehicle and Service Specifications Proposed for Cobb County’s BRT

The vehicle and service specifications proposed for Cobb County’s BRT will be identified

and documented. This includes parameters such as bus dimensions and capacity, bus turning radius,

service route length, and peak headway. The SMFe-bus will be designed to match or exceed those

identified specifications.

2.2.3 Task 2.3 Develop Laboratory Prototype of SMFe-bus Propulsion and Steering System

The procedure for developing the lab prototype for the propulsion and steering system will

be as follows:

• Select and procure in-wheel motors suitable for a lab prototype of an SMFe-bus with two-

wheel-drive lead and follower modules.

• Select and procure batteries and controllers compatible with the chosen in-wheel motors.

• Select and implement the steering method/system best-suited to the “virtual coupling”

module-following requirement.

7

• Design and construct a simple chassis for this lab prototype based on the selected motors,

batteries, controllers, and steering system. Develop the propulsion control system and the

interface between the high-level (module-following) computer and the vehicle propulsion

control system.

• Integrate the procured motors, batteries, controllers, and steering system into the lab

prototype’s chassis.

2.2.4 Task 2.4 Carry Out Tests and Improvements of SMFe-bus Prototype

As the procured components are received, they will be tested independently to ascertain that

they are fully functional and meet the requirements. Any observed deficiencies will be corrected.

Then the integrated system will be tested to ensure its functionality both before and after it is

integrated into the lab prototype’s chassis.

2.2.5 Task 2.5 Determine Design Specifications for an SMFe-bus Propulsion System that Can
Provide Service Matching that Proposed for the Cobb County BRT

Design specifications will be developed for an SMFe-bus propulsion system that can provide

service matching that proposed for the Cobb County BRT. The design and specifications will take

into account the lessons learned from the lab prototype’s design and test results.

2.2.6 Task 2.6 Assess Impact of a Fully Electric Propulsion System on Operations and Cost

Once the design for the SMFe-bus propulsion system has been specified, the researchers will

estimate the cost of a fully electric bus and compare that to the costs of similar-capacity fossil-fuel

buses and hybrid-electric buses. They will also study how the sizing of the SMFe-bus module’s

battery pack affects the type of battery-charging infrastructure required and how the time needed

for battery charging affects service operations. This will lead to recommendations on how to

balance battery pack sizing versus needed battery-charging infrastructure, and operational

performance and associated costs.

8

2.3 Task Set 3. Develop the Hardware and Software Needed to Demonstrate the Concept
of Virtual Coupling (Module-following) for Two Prototype SMFe-bus Modules

2.3.1 Task 3.1 Review Literature and Practices

The research team will thoroughly review papers related to vehicle tracking, robot tracking,

and related technologies. The advantages and disadvantages of various techniques and approaches

proposed in the literature will be identified. Meanwhile, practices and activities related to vehicle

and/or robot tracking, which have been implemented by other researchers, will be reviewed.

2.3.2 Task 3.2 Develop Computer Vision Algorithms for Object Recognition

The researchers will develop efficient computer vision algorithms to recognize objects

(vehicles) robustly and reliably. The developed algorithm can visually recognize a moving object

at a desired speed. The target object may move straightly or turn with a specific angle.

2.3.3 Task 3.3 Develop the Communication Software for the Low-level Vehicle Control System

The software will be developed to allow communication between the high-level vehicle

tracking system and the low-level motion control system. The researchers will establish the

communication prototypes, design the communication modes, and determine the communication

content.

2.3.4 Task 3.4 Develop Machine Learning Algorithms for Modular Tracking

A machine learning algorithm will be developed to determine optimal motion commands for

the vehicles (modular) through fusing the visual information extracted from the vision subsystem

and distance information measured by the sonar/laser sensors. After enormous offline training, the

vehicles are expected to autonomously learn correct tracking actions in various situations or

environments.

9

2.3.5 Task 3.5 Field Test and Improvement

The above algorithms and the developed system will be first tested and validated in a

laboratory environment. Once they are successful, some field tests will be carried on. The test

results will be evaluated and used to improve the algorithms and software/hardware design.

The work done and the results achieved are detailed in the following three chapters

corresponding to the three task sets, although they are presented in the order of task set 2, 3, and

then 1. This order is because task set 3 depended on the successful completion of task set 2, whereas

the completion of task set 1 was independent of the others and served essentially as a justification

for them.

10

This page is intentionally left blank.

11

3 TASK SET 2: Design and Prototyping of an SMFe-bus

3.1 State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion and Steering Systems

The literature and practices related to (hybrid) electric vehicle propulsion and steering were

reviewed to guide the way forward on this project.

Most of the world’s major bus manufacturers have (H)EVs in their product lineup. Some also

sell battery electric vehicles (BEVs) or only sell BEVs; one example of the latter is Proterra (see

Fig. 1a) [28], a U.S.-based company. With the ongoing trend of decreasing battery pack costs [29],

BEVs appear to have the edge over (H)EVs due to their simpler powertrain design, especially for

vehicles to be introduced 3–5 years from now or later. Hence, this project focused on a BEV, instead

of an HEV.

Presently, most BEVs for transit applications use a single electric motor to drive the two

wheels attached to a single axle. However, Proterra has recently introduced a BEV with two electric

motors to independently drive the two wheels attached to a single axle (see Fig. 1b) [30], which

exploits the power density of electric motors and improves steering control of the bus (i.e., it allows

for torque vectoring [31]). A two-speed gearbox interposed between the motor and its

corresponding wheel is used in that bus to improve hill-climbing performance, but this is at the

expense of increased space, weight, and cost. For the present project, there is not a hill-climbing

performance objective to be satisfied, hence a gearbox is unnecessary; moreover, the SMFe-bus

vehicle is slim and lateral space is a limiting factor. Thus, the researchers focused on hub (i.e., in-

wheel) motors where the motor is mounted within the hub of a wheel [32]. In-wheel motor (see

Fig. 2) advantages include the following:

• No mechanical gearings from the motor shaft

• A wide range of application, including conversions and hybridization

• Concept electric cars, and light commercial vehicles

• Electromechanical topology

12

• Independent distribution and variation of power (torque) to individual wheels

• Front/rear wheel drive vectoring in all-wheel-drive (AWD) vehicles for better traction and

road handling

 (a) (b)

FIGURE 1

Proterra Bus (a) Catalyst BEV [28]; (b) DuoPower Axle Assembly [30]

FIGURE 2

An In-Wheel Motor’s Main Components [33]

Manufacturers of hub (in-wheel) motors for EVs include Protean Electric [33], Elaphe [34], and

Kelly Controls [35].

The 35-ft version of the Proterra Catalyst (Fig. 1a) can probably be modified in a relatively

straightforward manner to serve as the lead module of the SMFe-bus, with the follower module

13

requiring somewhat more significant modifications (in particular, to provide it with module-

following capability).

3.2 Vehicle and Service Specifications Proposed for Cobb County’s BRT (as an example)

Vehicle and service specifications were identified and documented, including parameters

such as bus dimensions and capacity, bus turning radius, service route length, and peak headway.

Cobb County’s Department of Transportation has proposed implementing a BRT system, called

Connect Cobb, which will comprise the following:

• A corridor running from Kennesaw State to Midtown

• A 25.3-mile route with 15 stops, shown in Fig. 3

• Construction of expanded roads, as illustrated by Fig. 4

This project was budgeted at about $500 million [13], which is equivalent to a cost of almost

$20 million per service mile, although that is still lower than the cost associated with rail-based

mass transit [14]. The SMFe-bus will be designed (see Section 2.2.5) to match or exceed the

identified specifications of Cobb County’s arterial rapid transit (ART) bus, including those shown

in Fig. 5. Note that ART is sometimes used in place of BRT to emphasize that the route runs through

existing high-density, mixed-use arterial corridors.

14

FIGURE 3

Proposed Connect Cobb ART Corridor Showing Traffic Configuration and Stations
[Source: Cobb County DOT]

15

FIGURE 4

Proposed Typical Section on US 41 / Cobb Parkway [Source: Cobb County DOT]

ART Bus
Specifications

 SMFe-Bus
Specifications

Compressed Natural
Gas or Diesel-
Electric Hybrid

Fuel Type Battery Electric

110 (60 Seated plus
50 Standing)

Capacity 105 (24+27+27+27
seated, 4 modules, 9

rows, with 1 driver or
3 pax seated per row),

or
105 (33+36+36

seated, 3 modules, 12
rows, with 1 driver or
3 pax seated per row)

62 Length (ft) 27 to 36
8.5 Width (ft) 6 to 6.25
11 Height (ft) 10
39 Turning

Radius (ft)
33.1 (for each 36’

long module)
68000 Weight (lb) 21774 to 29032

At station Fare
Collection

At station

60 Max Speed
(mph)

60

Both Sides Door
Location

One Side

Follow
er

Lead

Follow
er

FIGURE 5

Comparing Specifications of Cobb County’s ART to Proposed SMFe-BRT

16

3.3 Lab Prototype of SMFe-bus Vehicle

A laboratory prototype of the SMFe-bus vehicle with two modules—a lead module and a

follower module (see Fig. 6)— was designed and constructed as a proof-of-concept demonstrator.

Their subsystems are essentially identical except that the follower module has sensors and a high-

level computer to enable it to track the lead module positioned and moving ahead of it. The design

and construction processes included the following steps, and the details for each subsystem are

presented in the following subsections.

• Select and procure in-wheel motors suitable for lab prototype of an SMFe-bus with two-

wheel-drive lead and follower modules.

• Select and procure batteries and controllers compatible with the chosen in-wheel motors.

• Select and implement the steering method/system best suited to the “virtual coupling”

module-following requirement.

• Design and construct a simple chassis for this lab prototype based on the selected motors,

batteries, controllers, and steering system. Develop the propulsion control system and the

interface between the high-level (module-following) computer, and the vehicle propulsion

control system.

• Integrate the procured motors, batteries, controllers, and steering system into the lab

prototype’s chassis.

17

FIGURE 6

Lab Prototype of the SMFe-bus Vehicle with Two Modules:
a Lead Module and a Follower Module

3.3.1 Hub Motors and Motor Controllers

To prove the above-described concept of the SMFe-BRT vehicle and determine needed

adjustments to the proposed vehicle design, a ⅓-scale prototype was developed. For this prototype

(with two ⅓-scale modules), it was estimated that each module would weigh about 250 kg (10 kg

for floorboard, 30 kg for rectangular chassis, 120 kg for batteries, 70 kg for hub motors and wheels,

20 kg for electronics and sensors). Furthermore, to attain linear speeds of at least 15 mph (24 km/h),

the two hub motors per module were sized at 2 kW each. A few suppliers were considered, and the

18

research team decided that the motor and motor controller would be acquired from Kelly Controls,

LLC.

The selected motor controller (Kelly KLS7222H [36]) is a sinusoidal wave drive type

controller that reduces the operation noise and the switching losses (by up to one-third). This motor

controller uses high-power metal-oxide semiconductor field-effect transistors (MOSFETS), space

vector pulse-width modulation (SVPWM), and field-oriented control (FOC) to achieve a peak

efficiency of 99%. The controller drives the selected 48 V 2 kW brushless DC hub motor with

10-inch tires (see Fig. 7) [37] with the help of Hall sensors, and is able to rotate it fast enough to

achieve linear speeds of up to 57.1 km/h. A 48 V 100 Ah battery pack is to be used to supply the

motors via the main contactor (with a precharge resistor across its contacts) and the motor

controller.

To test this prototype vehicle, it would need to be remotely controlled. This is addressed in

Section 3.3.4.

FIGURE 7

The Selected 48 V 2 kW Brushless DC Hub Motor
with 10-inch Tire Mounted on a Stand for Testing

19

3.3.2 Batteries

One important consideration when selecting the motor and motor controller was their voltage

rating. While a higher operating voltage would allow for reduced operating current, reduced wiring

size, and increased operating time, it would also increase the weight and cost of the battery pack.

Hence the 48 V was a reasonable compromise when considering all the above factors. Initially, the

researchers chose the Trojan SCS150 (12 V) deep-cycle wet lead-acid battery to implement this

pack, then for the second vehicle module they used the Duracell SL124MDC (12 V) deep-cycle

wet lead-acid battery, which was found to be a better cost-performance alternative, although its

capacity (20 hr) is 75 Ah instead of 100 Ah for the SCS150.

3.3.3 Chassis

To obtain a fairly lightweight yet sufficiently sturdy chassis for the prototype SMFe-bus

vehicle, the researchers decided to construct it using aluminum as the main material. Then, to ease

the design, reduce the machining requirements, and speed up the assembly process, they chose to

use T-slotted aluminum extrusions. The chassis design factored in the requirements for the various

subsystems, starting with the hub motors, and including an area for mounting/supporting the heavy

battery pack and an area for placing the electronics (and also sensors for the follower module). Fig.

8 shows a rendering of the designed chassis for the scaled prototype.

FIGURE 8

Rendering of the Designed Chassis for the Scaled Prototype

20

3.3.4 Radio Control System

The prototype lead module’s propulsion system, which is controlled by remote means,

consists of the above-mentioned hub motors and motor controllers, together with a Raspberry Pi 3

computer, a digital-to-analog converter, and a radio-frequency (RF) remote control (RC) system.

To emulate a driver’s operation of the lead module, the RC system is used to communicate

the Throttle (Forward or Reverse), Brake, and Left or Right commands. The joysticks on the

selected Turnigy 5X [38] RC’s transmitter are used to command these actions, which are then

communicated to the RC receiver at a frequency of 2.4 GHz. A toggle switch on the RC transmitter

can also be used to initiate emergency stopping (Brake) in case of a dangerous situation. The

receiver’s channels output servo-type pulse-width modulated signals (with pulses ranging between

1 and 2 ms in width) based on each transmitter joystick’s position, which are read by the module’s

low-level Raspberry Pi 3 computer. Fig. 9 shows how the various components connect together to

permit remote operation of the prototype vehicle’s lead module for testing purposes.

FIGURE 9

Connection Diagram for Motor Control Using RC System

3.3.5 Low-level Computer (RPi) and Electronics Board

The electronics board (see Fig. 10) of the lead and follower modules are the same, differing

only in their firmware. First and foremost, the selected Raspberry Pi 3 computer [39] is powered

21

by a component that converts the 48 V from the pack of four 12 V batteries, connected in series,

down to 5 V. Then, there is a Raspberry Pi Cobbler/connector board that provides a convenient

breakout of the General Purpose Input Output (GPIO) pin selection of the Raspberry Pi.

The signals output from four channels of the RC receiver are sent as inputs to the GPIO pins

of the Raspberry Pi for processing. These channels represent the Forward or Reverse switch

command, Throttle command, the Left or Right command, and the Brake command.

Due to the Raspberry Pi 3 lacking analog outputs, an MCP4725 digital-analog converter

(DAC) [40] was selected for producing the analog voltage needed by the motor controller. This

DAC, with 12-bit resolution, can output a voltage between 0 and 6.5 V while the motor controller

selected for the prototype vehicle requires a throttle input of 0 to 5 V. The DAC communicates

with the Pi 3 using the I2C communication protocol. A Python script is run on the Pi 3 to read the

input from the RC receiver and then write an I2C signal to the DAC; this script (see

“lead_mod_t9.py” in Appendix A) runs continuously on the lead module during testing, while it is

run on the follower module only while maneuvering it out of the lab and to the test site. Specifically,

the joystick on the RC transmitter being all the way down produces 0 V of motor throttle and the

joystick all the way up produces 5 V of motor throttle. Since one DAC is needed for each of the

two hub motors, the bus address of one of the DACs was changed from the default value of (0×62)

to (0×63). This allows different voltages, if needed, to be applied to the left and right motors.

22

FIGURE 10

Connection Schematic for the Electronics Board

For the follower module only, the purpose of the “lmsc_v3_27.py” program is to interface

between the high-level controller (laptop) and this module’s subsystems that vary its speed and

direction to achieve module following. A flowchart of this program is displayed as Fig. 11. When

this program is executed, it first extends the braking actuator to release the brakes applied to the

hub motor’s rotors. The program then centers the steering using the steering actuator. After this,

transmission control protocol (TCP) communication is established with the high-level controller

(laptop) that sends this program the values it needs for the hub motor speed (in RPM) and the

steering wheel angle (in degrees, with right of straight-ahead having positive values and left of

straight-ahead having negative values), and it obtains and initializes these values immediately.

23

FIGURE 11

“lmsc_v3_27.py” Flowchart

The motor speed thread is then set up. In this thread, the emergency brake trigger on the RF

remote will be checked. If it is triggered, then the program will retract the braking actuator to apply

the brake and will set the motor speed control to zero. If the emergency brake is not applied, then

it will assign the desired values for the motor RPM that were received from the TCP

communications earlier.

The steering thread is then set up. In this thread, the current location of the steering actuator

will be acquired. The desired location for the steering that is received from the high-performance

24

controller will be checked so that the minimum and maximum bounds are not passed. The steering

actuator uses a pulse-width modulation (PWM) value so that the speed of the actuator can be varied

as a function of the distance that the actuator must travel. This PWM value will be calculated in

this thread and then sent to the actuator to control the steering.

Although the initial TCP communication is started at the beginning of the program, there is

still a thread making use of the TCP protocol for the remainder of the operation. The TCP

communication thread is then set up. In this thread, the RPM of the motors will be checked, and

the proportional–integral–derivative (PID) controller’s constants will be received. The desired

RPM and angle for the motors and steering will then be received from the high-performance

controller, and the angle will be immediately calculated to find the bit value that the analog-to-

digital converter (ADC) will read from the slide pot.

After these three threads are set up, they will all be started at the same time.

The program now enters an infinite loop that will constantly check for the thread flags to be

triggered. If this flag is triggered, then all of the threads will be terminated. The voltage to the

motors will be shut off, the PWM values to the steering actuator will be set to zero, the TCP

communication will be closed, the emergency brake and actuator brakes will both be applied, and

the GPIO pins will be deactivated.

3.3.6 Steering Method/System

The steering actuation system is based on the conventional go-kart steering system (see Fig.

12 diagram). Calculations for this system were performed to find an equation that would relate the

required stroke length of the steering actuator to the desired angle of the front (steering) wheels.

What is shown in the figure is the actuator arm and where the value of angle θ is being

obtained. The law of cosines is used since there are two known sides for the triangle that the actuator

creates. Two unknowns are left (i.e., θ and the actuator length). The θ or the actuator length can be

set up as functions of one another, producing a nonlinear output. This illustration also shows the

25

minimum and maximum values that the arm will be able to extend. Lastly, several values for the θ

are calculated over the extension of the actuator length in order to find where the steering column

will end.

Actuator Length [LA]= 287mm to 419mm (+/- 2mm)
Steering Actuator = 76.8mm

LA

2 = 76.82 + 363.52 – 2*74.6*363.5*cos θ Using the law of cosines

θ = cos−1
𝐿𝐿𝐴𝐴2 − 138030
−55834

θmin = cos−1
2872 − 138030

−55834
= 4.5°

θmax = cos−1
4192 − 138030

−55834
= 132.2°

θstraight = cos−1
3502 − 138030

−55834
= 73.85°

θadjusted = cos−1
𝐿𝐿𝐴𝐴2 − 138030
−55834

− 73.85°

θadjusted will be zero when the wheels are straight, be positive when they are turned to the right,
and negative when they are turned to the left.

a = 76.8mm

b = 363.5mm

c = LA

FIGURE 12

Steering Actuation System Diagram

26

Fig. 13 shows a tidier version of the previous figure. The measurements were retaken for the

calculations, so the constant values in the equation are slightly different; this is the equation used

in the other calculations in Fig. 13.

Actuator Length [LA]= 287mm to 419mm (+/- 2mm)
Steering Actuator = 76.8mm

LA

2 = 77.52 + 3602 – 2*77.5*360*cos θ Using the law of cosines

LA

2 = 135606 – 55800*cos θ

LA

2 - 135606 = -55800*cos θ

θ = cos−1
𝐿𝐿𝐴𝐴2 − 135606
−55800

𝐿𝐿𝐴𝐴 = √135606− 55800cosθ

a = 77.5mm

b = 360mm

c = LA

FIGURE 13

Derivation of Equation Relating Steering Wheel Angle and Steering Actuator Length

Fig. 14 shows the length of the actuator that is being read into the Raspberry Pi via a

proportionally equivalent slide potentiometer, which produces an output voltage that varies as the

length of the actuator changes and moves/repositions the attached potentiometer tab along with it.

27

This figure first illustrates with a graph the change in the bit values read into the Raspberry Pi from

the slide pot. The graph is of the actuator length versus the bit values read, using the minimum and

maximum actuator lengths and respective bit values as the data points. An equation for the best-fit

straight line through these points was found and then plugged into the equation presented in Fig.

13. “DL” replaces the bit value variable “b” as it is the variable name used in the Python program.

LA = Actuator Length
b = Bit Value
LA,min = 325.44mm

LA,max = 396.88mm

bmin = 1550
bmax = 400

𝑚𝑚 =
𝐿𝐿𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
=

325.44 − 396.88
1550 − 400

− .0621

LA = -.0621*b + C

C = LA + .0621*b = 325.44 + .0621*1550 = 421.7

LA = -.0621*b + 421.7

300

320

340

360

380

400

420

300 500 700 900 1100 1300 1500 1700

Ac
tu

at
or

 L
en

gt
h

Bit Value

Bit Value vs Actuator Length

FIGURE 14

Derivation of Equation Relating Steering Actuator Length and Bit Value of ADC

28

3.3.7 Braking Method/System

Braking of each module is done in two ways. The first is electronic or regenerative braking,

which is carried out by the motor controllers as discussed in Section 3.3.1 above. But for safety

(emergency stop) reasons, a mechanical disk brake system was also implemented on each module

to more quickly slow down and possibly fully stop the rear wheels (with the hub motors). This

system is detailed as follows.

The disk brakes on the SMFe-bus slow down and stop the vehicle while in operation. For the

lead module, this will be commanded by its RC system transmitter’s operator and implemented by

the Raspberry Pi program for RC operation (see “lead_mod_t9.py” in Appendix A). For the

follower module, this will be commanded in the event of an emergency situation by the Emergency

Brake switch on its RC system transmitter, which the Raspberry Pi program for automatic following

operation will interpret as discontinuing automatic following and fully applying the disk brakes.

The hydraulic brakes are engaged when a linear actuator pulls a cable attached to the brake

lever. The brake lever provides the leverage for a push rod to force fluid through the brake lines

and into the calipers. The pressure inside each caliper forces a piston to exert force on the brake

pads and create friction against the (spinning) rotor/disk. This friction is what slows and eventually

stops the wheels.

The main hardware components of the braking system consist of the following (see Fig. 10

− Connection Schematic for the Electronics Board):

1. Raspberry Pi 3

2. Adafruit DRV8871 motor driver

3. Zoom Industrial 4″ linear actuator with integrated Hall effect sensor

4. 48–24 V DC/DC converter

5. Hydraulic brake system

a. Master cylinder with lever

29

b. Brake fluid lines

c. Caliper, brake pads, and rotor

As described, the brakes are applied when the 4″ actuator contracts. Conversely, the brakes

are released when the actuator extends. This forward and reverse motion is controlled by altering

the polarity of the voltage applied to the actuator using the DRV8871 motor driver. Moreover, the

two logic inputs to the motor driver originate from the Raspberry Pi 3, which sends the signals to

extend and retract, depending on the joystick position of an RC system transmitter (for the lead

module), or if the Emergency Brake switch of an RC system transmitter has been activated (retract

only, for both the lead and follower modules).

The control program for each SMFe-bus module is written in Python (see Appendix), which

includes the braking routine, and is run on the Raspberry Pi 3 low-level controller. When the

program begins its execution, the linear actuator is extended to its maximum position, which

releases the brakes completely. In the main routine of the Raspberry Pi program for RC operation

(lead module), the desired position and the actual position of the actuator are compared. That is,

the desired position of the lead module RC system’s joystick is compared with the actual position

of the actuator; this actual position is determined by either incrementing or decrementing a counter

based on the pulses from the Hall sensor inside the actuator. The more the joystick is pulled back,

the more the actuator contracts, and the same is true for the opposite direction.

The actuator has a software-set retraction limit to stop the actuator from breaking the cable

that tethers its tip to the lever on the brake’s master cylinder.

3.3.8 Tests and Improvements of SMFe-bus Prototype

As the procured components were received, they were tested independently to ascertain that

they were fully functional and met their requirements. Then, each of the above-mentioned

subsystems was tested independently to ensure its functionality both before and after it was

integrated into the lab prototype’s chassis. Finally, the complete and integrated power and

30

propulsion system, operated by a remote-control system working properly, was tested first indoors

and then outdoors to assess motor throttling (forward and reverse), steering, regenerative braking,

and emergency braking. Each problem detected during the tests was corrected. This resulted in

module prototypes that yield performance that meets or exceeds the technical objectives (mainly

straight-line speed and cornering speed) proposed for their power, propulsion, steering, and braking

systems.

3.4 Design Specifications for an SMFe-bus Propulsion System that Can Provide Service
Matching That Proposed for the Cobb County BRT

Design specifications were developed for an SMFe-bus propulsion system that can provide

service matching that proposed for the Cobb County BRT. The design and specifications took into

account the lessons learned from the lab prototype’s design and test results.

Calculations were performed to determine the maximum power requirement for propelling

each SMFe-bus module, assuming a curb weight of 29,032 lb for a 36-ft-long 36-passenger

follower module (the corresponding lead module will have room for 33 passengers, 1 driver, and

1 wheelchair-bound passenger), in order to properly specify the electric motors. It was further

assumed that the vehicle will need to accelerate from 0 to 30 mph in 9 seconds, and also reach a

maximum speed of 60 mph. Hence, the motors need to be about either 176 hp (132 kW) for two

hub motors or 88 hp (66 kW) for four hub motors. After estimating the motors’ power rating, a

current-versus-time profile was roughed out, assuming a 370 V battery pack and that the distance

between each of the 14 total stops along the planned Cobb Parkway BRT corridor [41] was the

same, which implied that 145 Ah of charge was needed for a one-way trip, as depicted in Fig. 15.

Selecting a 600 Ah capacity battery pack (equivalent to 222 kWh) would allow the vehicle to make

two round trips without recharging, although this neglects the energy needed for heating/cooling

and other electrical/electronic systems.

31

0

20

40

60

80

100

120

140

160

0

50

100

150

200

250

20 25 30 35 40

Ch
ar

ge
 (A

h)

Po
w

er
 (k

W
)

Bus length (ft)

Needed Power, and Charge, vs Bus Length

Power vs Bus length (2
motor)

Power vs Bus length (4
motor)

Charge per oneway trip vs
length (2 motors and 4
motors)

FIGURE 15

Different Power and Charge Requirements as a Function of Bus Module Length

3.5 Impact of a Fully Electric Propulsion System on Operations and Cost

Once the design for the SMFe-bus propulsion system was specified, the research team could

estimate the cost of a fully electric bus and compare that to the costs of similar-capacity fossil-fuel

buses and hybrid electric buses. The researchers could also study how the sizing of the SMFe-bus

module’s battery pack affects the type of battery-charging infrastructure required and how the time

needed for battery charging affects service operations. This finding then leads to recommendations

on how to balance battery pack sizing versus needed battery-charging infrastructure, and

operational performance and associated costs.

The SMFe-bus vehicle will be all-electric as compared to the compressed natural gas or

diesel-electric hybrid BRT vehicle planned for the Connect Cobb project; hence, it will be more

environmentally friendly.

As noted in Section 3.4, a 600 Ah capacity battery pack (equivalent to 222 kWh for a 375 V

power and propulsion voltage) would allow the vehicle to make two round trips without recharging,

although this ignores the energy needed for heating/cooling and other electrical/electronic systems.

32

During the day, the vehicle’s modules can receive a quick charge at the terminating stations, which

should allow it to be able to run continuously throughout the day without downtime for a complete

recharging. Of course, if it is a follower module that is temporarily taken out of service during a

low-demand period, it can be recharged during that time. At night, the vehicles will be connected

to the charging stations to charge the batteries to their full capacities. There are three different types

of chargers that can be used that have different ratings [42], as shown in Fig. 16. Level 1 and 2

chargers use single-phase or 3-phase AC supply and can deliver power from 2 to 20 kW. Level 3

chargers require a 3-phase AC supply and can deliver power from 20 to 240 kW, which permits

fast charging.

 FIGURE 16

Charging Times for Different Levels of Charging

The researchers considered how these calculations compare to the recently published

specifications for a commercially available, fully electric transit bus. Table 1 compares several key

features, which indicate that the calculations are quite reasonable.

TABLE 1
Comparison of Several Key Features of Proposed SMFe-bus

to the Proterra FC Bus

 SMFe-bus Proterra FC

Total energy (kWh) 222 94

Top speed (mph) 60 65

Acceleration 0–20 mph (s) 6 4.5

Motors (kW) 2×132 2×190

Curb weight (lb) 29,032 28,925

Total energy (kWh) 222 94

Gearbox None 2-speed auto-shift

33

4 TASK SET 3: Development and Demonstration of Module-
following Control

4.1 Review of Literature and Practices

Autonomous vehicle tracking has attracted significant attention in the intelligent

transportation community. Most research activities have focused on developing a model-based

leader–follower controller so that a follower vehicle can track its predecessor autonomously and

reliably. For example, Loria et al. proposed a leader–follower nonlinear controller when the

vehicles followed a straight path. Specifically, since the system to be controlled is not controllable

(in the control theoretic sense of this word), they developed a controller that has a property of

persistence of excitation to make the whole system stable [43]. Cruz-Morales et al. presented a

leader–follower formation strategy for nonholonomic mobile robots, where the discrete kinematics

models of the robots were derived, and the relative distance/angle model between the robots was

developed. These models were employed to develop a control law for autonomous tracking [44].

Since the vehicle models are usually nonlinear, a number of researchers employed nonlinear

control approaches to design a control law [45–50]. Paliotta and Pettersen [45] developed a

distributed control law for leader–follower synchronization with disturbance rejection. The

feedback linearization technique was utilized to derive the control law. Chen et al. [46] considered

the measurement delays in a leader–follower formation control problem for nonholonomic

vehicles. In particular, they extended the concept of input-to-state stability and integrated a Smith

predictor with nonlinear small-gain assignment. Mori and Namerikawa [47] proposed a formation

control algorithm based on a consensus algorithm and a leader–follower structure for a multi-UAV

(unmanned aerial vehicle) system. They developed the control algorithm based on the Lyapunov

stability theorem and linear matrix inequality (LMI) conditions when the communication between

two vehicles was intermittent.

34

In a leader–follower control structure, since the trajectory of the leader vehicle can be

naturally regarded as the predicted reference trajectory that the follower vehicle needs to follow,

the model predictive control (MPC) technique was employed by many researchers to implement

autonomous vehicle tracking [51–55]. For example, Maeda and Konaka presented an MPC

controller to predict the predecessor’s trajectory for a two-wheeled vehicle [51]. Dunbar and

Caveney developed a distributed receding horizon controller for a vehicle platoon, and derived the

sufficient conditions of string stability [53].

The techniques of sliding mode control, adaptive control and robust control are also very

popular in designing a leader–follower controller [56–63]. For instance, Koroglu and Falcone

proposed a controller for a platoon of autonomous homogeneous vehicles. They studied the string

stability problem and derived the sufficient LMI conditions [56]. Chen et al. developed a sliding

mode controller for distributed formation control of multiple mobile robots [58]. They also

employed the backstepping method to study the formation control strategy. In addition, Chen,

Torre, and Dong developed a distributed exponentially tracking controller for multiple wheeled

mobile robots using adaptive control [60].

All of the above research is related to model-based control. In these research projects, the

mathematical model of vehicle kinematics or dynamics was derived and then a controller was

designed based on this model.

Only a few researchers have tried the model-free control methods thus far [64–68]. For

example, Hung et al. employed the reinforcement learning algorithm to implement a

leader–follower controller for fixed-wing UAVs in a stochastic environment [64], where Dyna-Q

with a variable learning rate was employed by the agents to learn a control policy. Peng et al.

proposed adaptive dynamic surface control for autonomous surface vehicles using neural networks

[65]. Their developed approach was compared to a model-based control method. Rinaldi, Chiesa,

and Quagliotti compared linear–quadratic regulator (LQR) control to neural network control in a

leader–follower formation control task for quadrotor UAVs [66].

35

Leader–follower tracking control is usually appropriate to a vehicle team including two or

three vehicles. If there are more than three vehicles, then the vehicles form a platoon. In a platoon

of vehicles, leader–follower control is still at the core of the control strategy, but an additional issue

called “string stability” must be considered, which means that the effect of disturbances will not be

amplified throughout the string as the vehicle index increases. Peters and Mason proposed a

leader–follower control strategy for a platoon of vehicles with non-homogeneous weights [69]. To

guarantee the string stability, each follower vehicle receives not only the state of its immediate

predecessor but also the state of the leader. Similar approaches were employed in other studies to

implement coordinated control of a platoon of vehicles with string stability [70–75].

Clearly, controller design could be simplified if the vehicles can communicate with each

other through a wired or wireless network and acquire the exact states of its neighbors and/or the

leader in the platoon. As a result, it has been popular to employ explicit communication in vehicle

tracking control to improve the system’s reliability and stability [76–79]. Ampountolas and Kring

proposed a bus-to-bus communication strategy to acquire the current position and speed of the

leader bus to improve cooperation between the buses [76]. Hu and Lemmon proposed a distributed

switching control approach to achieve almost sure safety for leader–follower vehicle control. The

vehicles can exchange their information over a wireless radio communication network to attain and

maintain formations [78].

While explicit communications among vehicles simplify the controller design, the inevitable

communication delays and disturbances could make the system unstable.

It is surprising that few researchers have employed computer vision in autonomous vehicle

tracking; however, this is partly due to unreliable detections and slow response speed of a computer

vision subsystem. Karras, Kyriakopoulos, and Karavas proposed a leader–follower scheme using

vision-based implicit communications for underwater vehicles [80]. The relative positions between

the vehicles were estimated using a computer vision algorithm, and a motion tracking controller

was implemented for robust leader–follower tracking. Cruz-Morales et al. developed a

36

leader–follower formation control strategy for nonholonomic mobile robots [44]. In particular, a

Microsoft Kinect™ camera was employed to acquire the relative distance and angle between the

robots, and a motion control law was derived to utilize the acquired visual information.

Here is a summary of existing research in autonomous vehicle tracking:

• Most researchers have focused on developing a model-based controller. Few investigators

have paid attention to model-free control strategies.

• Explicit communication approaches have been utilized extensively to simplify the

controller design.

• Computer vision is seldom applied to autonomous vehicle tracking even though the camera

cost has been reduced dramatically and the computer vision algorithms have been

improved significantly in recent years.

The researchers in this project contend that a model-free control approach has some

advantages over a model-based control approach. Due to the complexity of a vehicle’s kinematics

and dynamics, it is challenging to derive its mathematical model accurately since it is quite

nonlinear. Specifically, because the math model matches the real kinematics and dynamics of the

vehicle only in a very small work zone, using an approximate linearized model often makes the

control law fail when the vehicle is not working in the desired work zone. The researchers also

argue that the explicit communication approach introduces additional controller stability issues due

to unexpected communication delays and disturbances, even though it simplifies the controller

design. Instead, here they propose employing some local sensing approaches (i.e., distance

measurements and object detections) to improve the reliability of the vehicle tracking system.

Furthermore, in view of the significant progress in computer vision research in the past years, they

also propose integrating computer vision with other sensing approaches for vehicle tracking

because they believe the vision subsystem can provide richer environmental information than other

sensors.

37

4.2 Develop Computer Vision Algorithms for Object Recognition

In this project, the position of the leader vehicle is detected visually using a ZED™ camera

and the SSD (Single Shot MultiBox Detector) deep learning technology [53]. In the past two or

three years, there has been significant progress in deep learning or the deep neural network based

on convolutional neural network (CNN) to detect visual objects. In particular, it was reported that

deep learning has shown better image recognition capabilities than human eyes [53]. SSD deep

learning is based on the famous VGG-16 architecture and includes additional convolutional layers

to extract features at multiple scales [53]. Specifically, SSD can complete image classification and

object localization in a single forward pass of the network. Another advantage of SSD is its real-

time performance, “scoring over 74% mAP (mean Average Precision) at 59 frames per second on

standard datasets such as PascalVOC and COCO.” [54]

An SSD neural network was trained in this project to detect an owl logo pasted on the

backside of the leader vehicle, as shown in Fig. 17.

FIGURE 17

The Training Samples

To train the SSD deep neural network, 500 images of the owl logo were acquired from

different orientations and distances. Then, the 500 images were input to the SSD network as the

training samples. After 2,000 training iterations, the total loss of the network converges to 1.6, as

shown in Fig. 18, which indicates a successful training result.

38

FIGURE 18

The Total Loss of the SSD Network After 2,000 Training Iterations

To improve the detection speed of the SSD technology mentioned above, an image filtering

algorithm using depth information was proposed, as shown in Fig. 19.

Acquire the color
image and depth

Generate the image
mask using the
depth image

Apply the mask over
the color image to get
the cropped image

Search the visual object
in the cropped image

FIGURE 19

The Image Filtering Algorithm Using Depth Information

In the above algorithm, the original color image and the depth image are first acquired

through a ZED™ stereo camera. Then an image mask is generated using the depth image and the

predefined depth range. In particular, if a pixel’s depth is within the expected depth range, the value

of “1” will be assigned in the corresponding position in the mask. Otherwise, “0” will be assigned

in that position. Next, the image mask is applied over the original color image to generate the

cropped image, which includes the objects within the expected depth range only. Finally, the SSD

39

deep learning technology is employed to detect the object of interest on the cropped image. The

image series in Fig. 20 shows the processing results using the image filtering algorithm proposed

in Fig. 19.

 (a) (b)

 (c) (d)

FIGURE 20

The Image Processing Results Using the Proposed Image Filtering Algorithm:
(a) Original Color Image; (b) Depth Image;
(c) Image Mask; (d) Cropped Color Image

In the proposed image filtering algorithm, since the background and the objects not within

the expected depth range are quickly filtered, SSD deep learning just needs to search the visual

target (the owl logo here) in a small area of the cropped color image, which significantly improves

the speed of the computer vision subsystem.

4.3 Develop the Communication Software for the Low-level Vehicle Control System

A local network (LAN) is set up in the follower vehicle through a wired router. The high-

level control system (the laptop), the low-level control system (the RaspBerry Pi), and the laser

scanner are connected in the network. A C++ TCP/IP program was developed in the laptop end,

which can communicate with the Python program in the low-level control system. A high-level

40

communication protocol was created to deliver the sensory information and control commands

between the high-level and low-level control systems.

4.4 Develop Machine Learning Algorithms for Modular Tracking

To meet various challenges in the project, a model-free neural network controller with dual

Kalman filters was proposed, as shown in Fig. 21.

Sel
#2

Neural Network

Vehicle Camera

Kalman
Filter #2

Kalman
Filter #1 Sel

#1
MUX

Trained
Knowledge
Base

Laser Distance
Finder

FIGURE 21

Leader–Follower Controller Using the Neural Network and
Dual Kalman Filters for Autonomous Vehicle Tracking

In Fig. 21, the follower vehicle utilizes its onboard camera and laser distance finder to acquire

the image of the leader vehicle that is moving in front of it and the distance d between them. Then

 x
the center position of the leader vehicle in the image is extracted through the computer vision

 y

technology. A model-free neural network controller was proposed, which adjusts the translational

 v
and rotational velocities r

 of the follower vehicle based on the measured x y, , and d . When
ωr

the follower vehicle is moving, since the camera is physically attached to the vehicle, the camera

velocity ξc is changed accordingly and a different image of the leader vehicle is observed.

41

Meanwhile, the distance between the two vehicles is also changed due to the motions of the two

vehicles. The neural network controller is trained offline so that it can adjust r

r

v
ω

 continuously to

keep a constant distance between the two vehicles and make
x
y

 stay within a desired region on

the image.

As mentioned, the slow response time of the computer vision subsystem and the laser sensor

could cause the control system to fail totally. In this project, a dual-Kalman-filter approach was

proposed to solve this problem, as shown in Fig. 21. There are two Kalman filters in the control

loop, one for the computer vision subsystem and the other for the laser distance finder, which

predict a new
ˆ
ˆ
x
y

 or d̂ based on their internal models. In addition to the filters, a selection unit

(the “Sel” unit in Fig. 19) is designed to select a predicted measurement or a real measurement

from the laser sensor or the computer vision subsystem. The selection strategy is as follows: If a

new real measurement is available, the selection unit will select the new measurement as its output.

Otherwise, the unit will select a measurement predicted by the Kalman filter as its output.

There are two advantages observed by introducing the two Kalman filters into the control

loop. First, since the Kalman filters take less than 3 ms to predict a new measurement estimation,

the controller can update the control command []Tr rv ω within 10 ms, which is much faster than

the control loop without the Kalman filters. Second, the experimental results in this project also

show the dual-Kalman-filter approach improves the measurement reliability when the computer

vision subsystem does not detect the leader vehicle in an image occasionally.

A model-free neural network controller was proposed to adjust the translational and

rotational velocities of the follower vehicle. One of the advantages of a neural network controller

is avoiding complicated modeling and subsequent linearization of the nonlinear vehicle dynamics,

42

which is the main challenge in most model-based control approaches. The architecture of the neural

network controller in this project is presented in Fig. 22.

FIGURE 22

Architecture of the Neural Network Controller

In Fig. 22, the neural network controller accepts three inputs x y, , and d . In particular, x

and y represent the center of the leader vehicle on the image plane, and d represents the current

distance between the leader and follower vehicles. Then, the controller has four output units, and

each of those represents a specific action (A A1 4~) of the follower vehicle: increase or decrease

its translational or rotational velocities. The control strategy is learned from the samples through

the backpropagation (BP) training algorithm [81], which are shown in Table 2. The objective of

the controller is to keep the visual target on the rear of the leader vehicle close to the center of the

image and maintain a constant distance between the two vehicles.

43

TABLE 2
The Training Samples of the Neural Network

Sample

Inputs Outputs

 x d 1A 2A 3A 4A

1 0 0 2 0 0 1

2 1 0 1 0 0 1

3 2 0 0 0 0 1

4 3 0 0 1 0 1

5 4 0 0 2 0 1

6 0 1 2 0 0 0

7 1 1 1 0 0 0

8 2 1 0 0 0 0

9 3 1 0 1 0 0

10 4 1 0 2 0 0

11 0 2 2 0 1 0

12 1 2 1 0 1 0

13 2 2 0 0 1 0

14 3 2 0 1 1 0

15 4 2 0 2 1 0

In Table 2, only x and d are considered because y almost does not change when the vehicles

are running on a flat surface. The value of x is normalized to a number varying from 0 to 4, which

represents the visual target position on the image plane from the far left side to the far right side.

The normalized values of d vary from 0 to 2, which represent a “short,” an “appropriate,” or a

“long distance” between two vehicles. The value of each output unit (A A1 4~) is telling how to

44

adjust the follower vehicle’s velocities. For example, A1 = 0 indicates keeping the current ω r ,

A1 =1 indicates increasing ω r by a constant ∆ω , and A1 = 2 indicates increasing ω r by 2∆ω .

Before the neural network controller could run in a real vehicle tracking experiment, it was

trained offline for 2,000 steps with 50 units in its hidden layer, using the samples in Table 2. The

training error quickly converged to zero, as shown in Fig. 23.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Step #

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Training Error

FIGURE 23

Training Error of the Neural Network in 2000 Steps
Using 50 Hidden Units

Meanwhile, the histories of several selected weights of the network are shown in Figs. 24

and 25 where the weights converged quickly in the 2,000-step training, which indicates that the

neural network learned the control strategy from the samples correctly.

45

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

w

FIGURE 24

History of Selected Weights from the Input Layer
to the Hidden Layer (w(1,10), w(2,20), w(1,26), w(2,35), w(1,17))

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

v

FIGURE 25

History of Selected Weights from the Hidden Layer
to the Output Layer (v(2,3), v(30,4), v(18,1), v(10,2), v(36,3))

46

As mentioned previously, there are two Kalman filters designed for predicting the position

of the leader vehicle on the image plane and the distance between the two vehicles. The model of

the first Kalman filter for the computer vision subsystem is given in Equation 1.

Xk = F X⋅ +

k k−1 w
 (1)

 Zk = H X⋅ k k+ v

where,

X k = [u
T

k kv uk vk uk kv] is the state variable;

(,u vk k) = the estimated position of the leader vehicle on the image plane at time k ;

Zk = the measured position using the computer vision algorithm at time k ;

F = the state transition matrix;

H = the measurement matrix;

wk = the process noise; and

vk = the measurement noise at time k .

Both wk and vk are the zero mean Gaussian white noise, i.e. w Qk ~ Ν(0, k) and

v Rk ~ Ν(0, k) , where Qk and Rk are the covariance matrices.

In this project, a constant acceleration model was assumed. In other words, it was assumed

that the position of the leader vehicle on the image plane is moving with a constant acceleration.

As a result, the matrices F and H were derived as follows:

47

 1 0 1 0 0.5 0
 0 1 0 1 0 0.5
 0 0 1 0 1 0

 F = (2)
 0 0 0 1 0 1
 0 0 0 0 1 0

 0 0 0 0 0 1

1 0 0 0 0 0
 H = (3)

0 1 0 0 0 0

It was also assumed that:

10−4 0 0 0 0 0
 0 10−4
 0 0 0 0
 0 0 10−4 0 0 0

 Qk = (4)
 0 0 0 10−4 0 0
 0 0 0 0 10−4 0

 0 0 0 0 0 10−4

10 0
 Rk = (5)

 0 10

Based on the above model, the Kalman filter continuously predicts the new positions of the

leader vehicle on the image plane. Meanwhile, once a new real measurement is extracted from the

image using the computer vision algorithm, it is employed to correct the filter. In the experiments

in this project, it was observed that the Kalman filter usually takes less than 3 ms to predict a new

position, while the computer vision algorithm takes more than 1,000 ms to return a new

measurement. As a result, there are many predictions between the two adjacent measurements.

48

Compared to the Kalman filter used in the computer vision subsystem, the second Kalman

filter for the laser sensor is much simpler, so its details are not presented here.

4.5 Field Test and Improvement

Several experiments with mobile robots were carried out to validate the proposed control

strategy when the leader vehicle was moving along a straight-line, circular, or “S”-shaped

trajectory. The experimental results for the circular trajectory are presented in Figs. 26 to 30. For

example, the trajectories of the two vehicles are shown in Fig. 26 where the leader vehicle was

moving along a circular trajectory with a radius of about 2.5 meters. As shown in the figure, the

follower vehicle successfully tracked the leader vehicle.

-3000 -2000 -1000 0 1000 2000 3000 4000

x(mm)

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

y(
m

m
)

Robot Trajectory: Follower Robot vs. Leader Robot

Follower Robot

Leader Robot

FIGURE 26

Trajectories of the Two Vehicles

Fig. 27 shows the x-coordinate of the visual sign on the image plane, which was extracted by

the computer vision algorithm or predicted by the first Kalman filter. The computer vision

subsystem takes about 1,050 ms to obtain a new measurement of the position of the visual sign.

49

Between every two adjacent measurements, the Kalman filter predicts a new position for the visual

sign. Based on the results shown in Fig. 27, it is evident that the Kalman filter worked well.

0 20 40 60 80 100 120 140 160

Time (s)

-600

-400

-200

0

200

400

600

800
Visual Detection: Real vs. Kalman Filter Predicted

Real

Kalman Filter Predicted

FIGURE 27

The x-coordinate of the Visual Sign on the Image Plane Extracted
by the Cascade Classifier Algorithm and Predicted by the First Kalman Filter

Fig. 26 presents the distance between the two vehicles measured by the laser scanner and

predicted by the second Kalman filter. It shows that the values predicted by the second Kalman

match the real measurements of the laser scanner very well.

50

0 20 40 60 80 100 120 140 160

Time (s)

0

200

400

600

800

1000

1200

1400

1600

1800

D
is

ta
nc

e
(m

m
)

Distance between the robots: Real vs. Kalman Filter Predicted

Real

Kalman Filter Predicted

FIGURE 28

Distance between the Two Vehicles Measured by the Laser Scanner
and Predicted by the Second Kalman Filter

 The outputs of the neural network controller will adjust the translational and rotational

velocities of the follower vehicle so that it can track the leader vehicle reliably. Therefore, it is

interesting to observe how these velocities are adjusted when the leader vehicle moves along a

circular trajectory. The history of the translational velocities of the two vehicles is presented in

Fig. 27 while the history of the rotational velocities is shown in Fig. 28.

51

0 20 40 60 80 100 120 140

Time (s)

-400

-300

-200

-100

0

100

200

300

400

500

600
Translational Velocity: Follower Robot vs. Leader Robot

Follower Robot

Leader Robot

FIGURE 29

Translational Velocities of the Two Vehicles

0 20 40 60 80 100 120 140

Time (s)

-5

0

5

10

15

20
Rotational Velocity: Follower Robot vs. Leader Robot

Follower Robot

Leader Robot

FIGURE 30

Rotational Velocities of the Two Vehicles

52

Based on these experimental results provided in Figs. 24 to 28, the proposed control strategy

with dual Kalman filters works successfully and effectively in a two-vehicle mobile robot

autonomous tracking situation.

53

5 TASK SET 1: Feasibility (Cost–Benefit) Study of the SMFe-BRT
Concept

5.1 Motivation

Atlanta, Georgia, and its metropolitan area is one of the fastest growing regions in the nation.

According to the Atlanta Regional Commission (ARC) 2014 Transportation Fact Book [82], the

region has been adding approximately 74,000 people each year since 1982. In 2011, the Atlanta

metropolitan region became the ninth largest in the nation with a population size of 4.3 million.

This number exceeded 5.8 million in 2017 according to the U.S. Census Bureau. Increasing

population of the region and its demand for transportation infrastructure are causing severe

congestion in Metro Atlanta. Total annual hours of delay have increased from 25,000 hours in 1982

to 150,000 hours in 2011. However, the supply of public transportation remains comparatively low

and does not meet this increasing demand. The annual public transportation passenger miles

traveled in Atlanta only range from 500 miles to 1,000 miles from the years of 1982 to 2011 [82].

As a result, the major state highways—Interstate 75, Interstate 85, and Interstate 285—suffer from

severe congestion. As seen in Fig. 31, the level of service (LOS) by travel time index (TTI) indicates

a LOS of F for most of the interstates in the northern part of Atlanta. Particularly, the region

between Cobb County and Fulton County is one of the most congested areas in Metro Atlanta. This

area experiences the highest travel demand, especially from daily commuters [41]. The only form

of public transportation supplied in this area is Cobb Linc Route 10, which connects the Marietta

Transfer Center with the MARTA Arts Station [83].

54

FIGURE 31

Most Congested Highway Segments, December 2014 [82]

5.2 Objectives and Overview

Bus rapid transit has gained popularity around the world in many metropolitan areas. BRT

systems have been widely adopted because of their operational flexibility as well as lower operating

costs [84]. Although BRT already has shown many benefits over traditional municipal buses,

continued improvements to the original BRT have been made over time. This feasibility study is

focused on a novel vehicle concept that the research team named Slim Modular Flexible Electric

Bus Rapid Transit, which has the following key features:

55

• The system consists of one lead module and one or more follower modules

• Each module is 25% narrower in width compared to a traditional BRT vehicle

• The follower modules are self-propelled using in-wheel electric motors

• The modules are virtually coupled for easy detaching and attaching

Because of the narrower body of the modules, less right-of-way would be required for the

dedicated bus lane, which translates to considerable savings in right-of-way and construction costs.

The virtual coupling of modules permits flexibility in operations to better meet varying travel

demand throughout a day. With each follower module being self-propelled by in-wheel electric

motors, the SMFe-BRT provides an environment-friendly transit alternative.

To test the proposed vehicle concept and compare it with the traditional BRT, the researchers

selected two of the busiest corridors in Georgia for this study: (1) Cobb Parkway, an arterial

corridor, and (2) Georgia State Route 400 (GA 400), a freeway corridor. Both corridors have

experienced severe congestion, especially during the peak periods of demand. The foremost reason

for selecting those two locations is the fact that BRT systems are currently planned for those

corridors.

5.2.1 Cobb Parkway Corridor

The Connect Cobb Corridor project was proposed in 2015 to improve the existing transit

system [85]. The project runs from Kennesaw State University’s Kennesaw Campus to the

MARTA Arts Center station and consists of the following key features:

• Proposed bus rapid transit system

• Construction of dedicated bus lanes—center- and side-running dedicated guide lanes

• Usage of I-75 high-occupancy vehicle (HOV) lanes

• Total distance of 25.3 miles of the proposed BRT line

• BRT with a short headway of 8 minutes

56

• 15 proposed BRT stations

This study focuses on the section from Barret Lakes Boulevard to Akers Mill Road (indicated

in purple in Fig. 32). This road section is approximately 12 miles long and includes a number of

major signalized intersections (listed below), where transit signal priority will be assumed.

• Cobb Parkway + Barrett Lakes Boulevard/Greers Chapel Road

• Cobb Parkway + Progressive Way

• Cobb Parkway + Bells Ferry Road

• Cobb Parkway + Canton Road ramps (exit and entrance)

• Cobb Parkway + Allgood Road Northeast

• Cobb Parkway + North Marietta Parkway

• Cobb Parkway + Roswell Street Northeast

• Cobb Parkway + South Marietta Parkway

• Cobb Parkway + South Cobb Drive ramps (exit and entrance)

• Cobb Parkway + Terrell Mill Road Southeast

• Cobb Parkway + Windy Hill Road Southeast

• Cobb Parkway + Herodian Way

• Cobb Parkway + Cumberland Boulevard

• Cobb Parkway + Spring Road Southeast

• Cobb Parkway + Circle 75 Parkway

• Cobb Parkway + I-285 ramps (exit and entrance)

• Cobb Parkway + Akers Mill Road

• Cumberland Boulevard + Spring Road Southeast

• Cumberland Boulevard + Cumberland Parkway Southeast

• Cumberland Boulevard + Akers Mill Road

• Akers Mill Road + I-75 HOV Lane ramp

57

FIGURE 32

Proposed Connect Cobb Corridor Project, April 2015 [85]

58

5.2.2 GA 400 Corridor

As documented in the GA 400 Transit Initiative’s Environmental Impact Statement [86],

there are four factors contributing to the need for the GA 400 Transit Initiative:

• Increased travel demand and resulting congestion generated by employment and

population growth

• Limited existing transit mobility within northern Fulton County and inadequate

connectivity to other major activity centers

• Transit travel times that are not competitive with automobile travel times

• Economic development opportunities being impacted by congestion

BRT will be added as part of the GA 400 Express Lane project. The project is approximately

12 miles long, running from the North Springs Station to Windward Parkway in northern Fulton

County, as shown in Fig. 33.

59

FIGURE 33

Proposed GA 400 Corridor Project, April 2015 [86]

60

5.3 Review of Literature

5.3.1 Introduction

The research team reviewed the literature pertaining to this study, including the following

aspects:

• Assumptions for generating future conditions

• Commuting tendency in Metro Atlanta, and the studies on BRT impacts in other cities

similar to Atlanta

• Environmental impacts and emission studies by vehicle types

• Methods for multicriteria evaluation of transportation projects, especially applications of

the analytic hierarchy process (AHP) method

5.3.2 Future Ridership Prediction

5.3.2.1 Commuting Data in Atlanta [87]

Prior to making a prediction of future public transit ridership, it is essential to investigate the

existing average percentage of demand for public transit. Residents in Metro Atlanta rely heavily

on their personal vehicles. Despite existing transit services provided by MARTA’s bus and rail

lines, USDOT Bureau of Transportation statistics show 79.6 percent (compared to 76.3 percent

nationwide) of Metro Atlanta commuters drive alone [2]. U.S. Census Bureau statistics show that

the percentage of commuters who choose personal vehicles has been increasing, and those who

choose public transportation has been decreasing since 1990. Data in 2014 indicate that the

percentage of public transit choice in Metro Atlanta is only 10.6% (see Fig. 34).

61

FIGURE 34

Commute Mode Share in Atlanta: 1990 to 2014 (Source: 1990 Census, 2000 Census, 2010
Census; and American Community Survey, 2006, 2010, 2014) [87]

5.3.2.2 BRT Ridership Study [88]

Due to the advanced technologies, improved designs, and features, BRT systems have gained

popularity over the past decade. This popularity has promoted the public’s demand for the BRT

systems. To measure the changes in BRT ridership, Peak et al. collected data for 10 consecutive

months in six BRT-operating cities. The results show that all six BRT-operating cities have

experienced significant increases in ridership. In Las Vegas, the Metropolitan Area Express (MAX)

system introduced by the Regional Transit Committee (RTC) is responsible for a 35 to 40 percent

growth in ridership. Alameda–Contra Costa (AC) Transit achieved the highest (84 percent)

increases in ridership in the governing districts. Table 3 summarizes the ridership increases in

various cities where BRT systems have been adopted.

62

TABLE 3
The Effect of BRT Service on Transit Ridership

It can be inferred that the introduction of BRT systems would typically induce an increase in

ridership.

5.3.2.3 Ridership Responsiveness [89]

Traditionally, the demand for public transportation has been more responsive to its service

than the monetary values, like bus fares. The data gathered from cities such as Detroit,

Chesapeake/Norfolk, Madison, and Stevenage, and from Great Britain indicate that the mean transit

headway elasticity is −0.47 with a standard deviation of ±0.14 for all service hours. For higher

service demand during peak hours, the mean value is −0.27 with a standard deviation of ±0.14.

The magnitude of elasticities indicates the relative change (e.g., percent change) in demand given

a relative change (e.g., one percent change) in headway. The negative sign of the elasticity indicates

that increasing headway will decrease demand. Since the magnitudes of the elasticity are less than

1.0, they imply that the demand is inelastic to headway changes in general.

63

5.3.2.4 Analysis of Vehicle and Person Throughput [90]

Given that personal vehicles are the major mode of commute in Metro Atlanta, the existing

HOV lanes on Interstate 85 (I-85) were experiencing congestion. To further improve the

serviceability of I-85, HOV lanes were converted into high-occupancy toll (HOT) lanes and opened

to traffic in 2011. Guensler et al. conducted this study after the conversion took place to examine

changes in vehicle occupancy, and vehicle and passenger throughput on I-85.

Since the implementation of tolls on the lanes, the average vehicle occupancy on the HOT

lanes has decreased from around 2 persons per vehicle to that of the general-purpose lanes.

Observed occupancies for the lanes on I-85 are shown in Table 4. Year 2012 is the latest observed

year, and the average vehicle occupancy (AVO) for all lanes is in the range of 1.16–1.20 persons

per vehicle.

TABLE 4
Observed Occupancy by Lane, Spring 2012, PM

5.3.3 Emission Calculations

5.3.3.1 Public Transit Fuel Type [91]

Knowing the fuel type of a vehicle is the initial step for emission calculations. Most heavy

and public transit vehicles historically have used diesel fuel, and diesel is still the main source of

fuel for heavy vehicles being manufactured. However, with the rising concerns for the environment

and air quality, alternative fuels have gained popularity. Compressed and liquefied natural gas, dual

fuel engines, grid-connected, and hybrid electric are some alternative fuels that are available today.

64

Among the alternative fuels mentioned above, natural gas propulsion is the primary

alternative for diesel public transit vehicles. In the U.S., approximately 7000 public transit vehicles

are operated by natural gas. Between the two major types of natural gas propulsion system,

compressed natural gas (CNG) is generally chosen over liquefied natural gas (LNG).

5.3.3.2 Automotive Emissions [92]

Depending on the purpose of a vehicle, the specific fuel type can be chosen as part of the

vehicle design. To estimate emissions from in-use vehicles, Faiz et al. defined the main pollutants

from automobile emissions. Harmful pollutants include carbon monoxide (CO), nitrogen oxides

(NOx), unburned hydrocarbons, volatile organic compounds (VOCs), and particulate matter (PM).

Other pollutants measured include non-methane organic gases (NMOG). Since natural gas is

mostly methane (CH4), CNG vehicles were measured with much lower NMOG than gasoline or

diesel vehicles; however, CNG vehicles produced higher emissions of methane. Vehicle emission

pollutants mentioned above were measured for CNG transit buses and listed as follows:

• CO, PM2.5, NOx, THC [93]

The U.S. Environmental Protection Agency (EPA) measured CNG transit bus emission

rates for CO, PM2.5, and NOx. It found that vehicles’ emissions are discharged at different

rates, depending on the manufactured year groups and the vehicle age groups. For the most

recent manufactured years from 2007 to 2013, and age groups of 0–3 years, the pollutants

were measured as follows: 2.18 g/mile for NOx, 5.93 g/mile for CO, and 0.0016 g/mile for

PM2.5. Total hydrocarbon content (THC) for the same manufactured year and age group

was 4.33 g/mile.

• Nitrous Oxide (N2O), Methane (CH4) [94]

The EPA also measured N2O and CH4 emission rates for on-road CNG transit buses. The

rates are listed as 1.97 g/mile for CH4, and 0.175 g/mile for N2O.

65

• Carbon Dioxide (CO2) [95]

In a study for the International Council on Clean Transportation, Delgado and Muncrief

measured CO2 emission rates for CNG buses as 2,250 g/mile.

• Volatile Organic Compounds (VOCs) [96]

The EPA lists the ratio of VOC to THC as 0.004. With the THC rate of 4.33 g/mile provided

above, the VOC rate can be calculated, using the given ratio, as 0.017 g/mile.

5.3.4 Analytic Hierarchy Process in Practice

Given the AHP as a widely used multi-criteria decision making (MCDM) framework, this

subsection focuses on previous studies that used the AHP method for the evaluation of

transportation projects.

5.3.4.1 The Case of Cracow, Poland [97]

In 2014, Nosal and Solecka applied the AHP method to evaluate the integrated system of

urban public transport (ISUPT) in Cracow. ISUPT was considered there for mobility management

purposes, and to encourage people’s use of public transportation and bicycles and their choice of

walking. The purpose of their study was to present the methodology of MCDM used and to apply

it to assess ISUPT alternatives. They presented eight variants for ISUPT design in Cracow and

created 10 evaluation criteria.

Criteria were chosen based on the survey of three interest groups: passengers, operators, and

city authorities; and the 10 criteria are as follows: (1) travel time, (2) journey standard, (3) rolling

stock use index, (4) environmental impact, (5) level of integration of public urban transport system,

(6) reliability of urban public transport system, (7) safety of journeys, (8) profitability of urban

public transport systems, (9) availability of urban public transport systems, and (10) investment

costs. The importance of these criteria as weighted by the three interest groups are indicated in Fig.

35.

66

FIGURE 35

Definition of the Importance of the Criteria, Results of Surveys Conducted in Cracow[97]

5.3.4.2 The Case of Korea [98]

As the highway system affects the users greatly, Tabucanon and Lee emphasized

improvements of the infrastructure. They used the AHP tool to select the alternative modes of

highway route improvements in Korea, using the measures of effectiveness (MOEs). The AHP

model was developed using the survey data and interviews of various interest groups’ members.

The highway users, the government, and the community members were chosen as the interest

groups for the AHP model development. Among the three interest groups, the most important group

was the highway users, with the weight assigned as 57%. The community members were the next

important with a weight of 29%, and the government was the least important with a weight of 13%.

67

The significance of the community members in the literature was due to people’s socio-economic

status, and the diverse demand.

Each of the interest groups was given a different set of factors. Highway users were given

travel time, travel cost, safety, congestion, and convenience, and they ranked the travel time factor

the highest. Community members were given factors of regional equity, air pollution, noise impact,

household displacement, and convenience. Because the highway system is part of the social

production and distribution system, it promotes the accumulation of public and private capital and

technology, and enhances market activity and income distribution and thus leads to improved living

standards, regional specialization of the industry for the efficient use of national resources. It can

also lead to balanced regional development and assists the achievement of regional equity and

national unity [98]. The regional equity can be measured by travel cost/time to regional center and

gross regional products of an area. As a result of the community survey, regional equity was valued

the most by the community members.

The authors compared the preference order results. The AHP method was the main tool of

evaluation in this literature; however, economic analysis, such as net present worth, benefit–cost

ratio, and internal rate of return, was also conducted for comparison purposes. As shown in Table 5,

the application of the AHP method yielded different priority results than the economic analysis

across alternatives.

TABLE 5
The Preference Order Using Both Economic and AHP Analyses

5.3.4.3 The Case of Lithuania [99]

The rail system in Lithuania is not very attractive to its passengers because of the low speed,

low level of comfort, and the low quality of railways and the dynamic characteristics of the

68

locomotives. Sivilevicius and Maskeliunaite developed an AHP method to aid decision making for

adopting a more effective rail system in Lithuania.

The evaluation criteria for this study were organized based on the railway trip quality and

were divided into four main categories: (1) technical state of the track, (2) railway planning and

technology, (3) price of the ticket, and (4) safety of the railroad.

5.3.4.4 The Case of Singapore [100]

The research problem lies with rapid economic development in Singapore. Singapore’s desire

to build a world-class transportation system encouraged the researchers to investigate alternative

fuel use for the years of 2020–2030. The goal was to displace oil as a source of fuel. A multiple

criteria decision method was used to identify 10 different fuel options, and then filter down to

4 main fuel alternatives. The AHP method was used for selecting the best fuel system, and the

alternatives were evaluated based on economic, technical, and social considerations. Sensitivity

analysis was also performed, which provides stability for the most optimum solution, especially

when the parameters are sensitive to change. The AHP method was also used for forward and

backward planning to determine the likely future conditions as well as the necessary policies.

The 10 preliminary alternative fuels are provided below. The alternatives were screened

using the multiple criteria decision method, and narrowed down to four: (1) status quo, (2) oil and

electric vehicles (EV), (3) oil and natural gas vehicles (NGV), and (4) methanol-fueled vehicles.

Status quo refers to no change in transportation fuel. These four alternatives were evaluated using

different criteria: consumer preference, safety, cost, supply, technology, and emission.

In addition, the policy that aids the selected alternatives was chosen from this list:

• Policy P1: to provide financial incentives to promote the use of electric vehicles

• Policy P2: to adopt stricter emissions standards for motor vehicles

• Policy P3: to provide the infrastructure to facilitate recharging of electric vehicles

69

• Policy P4: to lengthen the life of the certificate of entitlement for electric vehicles compared

with oil vehicles

It was found, after performing three steps of forward and backward processes, that the use of

electric vehicles would be the best option, along with the combination of Policies P1 and P3.

5.3.5 Application of Analytic Hierarchy Process

5.3.5.1 Weight Assignments by Experts [101]

Multicriteria decision analysis is typically used for selecting the optimal option for

transportation projects. Although cost-benefit analysis (CBA) is a popular decision-supporting tool,

it becomes inappropriate or less effective when the alternatives have values that are hard to

monetize. In their study, Schlickmann et al. used the AHP method for evaluation of transit

alternatives. The alternatives were defined as no build, BRT, and light rail transit (LRT). They

selected three main criteria: finance, transport, and land use.

One of the crucial steps in performing the AHP method is to consider experts’ opinions in

assigning criteria weights. The study shows the recent survey data answered by 19 experts from

different countries—Brazil, Canada, Germany, the Netherlands, Portugal, and the U.S. The survey

data are shown in Table 6. According to the assigned weights, the biggest influencers for choosing

an alternative were travel time, revenues, mode share, and operation and maintenance (O&M) costs,

since they add up to 60% of the total weight.

70

TABLE 6
Priority Profile

5.4 Methodology

5.4.1 Microsimulation – Vissim Model Parameters

The microsimulation software, PTV Vissim, was selected as the simulation tool. This

subsection discusses the Vissim network inputs that had constant values across the alternatives

evaluated.

5.4.1.1 Desired Speed Decisions

Desired speeds were assumed to follow respective speed limits, i.e., 45 mph for

Cobb Parkway; 35 mph for intersecting roads with Cobb Parkway; and 65 mph for GA 400.

71

5.4.1.2 Driving Behaviors

The drivers’ behaviors were assumed to follow urban (motorized) driving behaviors. The

Wiedemann 74 car-following model was used, for which the desired distance between each car is

calculated by Equation 6 [102]:

 𝑑𝑑 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑎𝑎, (6)

where

𝑎𝑎𝑎𝑎 = standstill distance;

bx = additional space between two successive vehicles if they are moving, and

 𝑏𝑏𝑎𝑎 = (𝑏𝑏𝑎𝑎 additive + 𝑏𝑏𝑎𝑎multiplicative × 𝑧𝑧) × √𝑣𝑣 ;

𝑣𝑣 = vehicle speed (m/s); and

z = value of range (0.1), which is normally distributed around 0.5 with a standard deviation

of 0.15.

5.4.1.3 Vehicle Compositions

According to the traffic count data gathered, the percentages of vehicles were estimated to

be 3% trucks, 2% buses, and 95% personal vehicles.

5.4.1.4 Signal Controllers

Ring barrier signal controllers are the typical type of signal controller used in all Vissim

models. For illustration, a typical ring barrier diagram is shown in Fig. 36.

FIGURE 36

Typical Ring Barrier Diagram

72

5.4.1.5 Simulation Characteristics

After the Vissim models were established, the simulations were executed five times to

generate network performance data. The purpose of multiple simulation runs is to capture the

variance in the results. Changing random seed number within Vissim for each simulation prevents

each simulation from having the same outcome.

The total length of the Vissim simulation was set for 5,400 simulation seconds (5,400 real-

time seconds). The seeding period was set to be 1,800 simulation seconds. During the seeding

period, a unique traffic composition was planted into the Vissim network. The actual recording

periods for reporting were 3,600 simulation seconds. The simulation results were recorded and

compiled for the AM peak, PM peak, and off-peak periods each under the following conditions:

• Future condition with BRT, 27% ridership increase

• Future condition with SMFe-BRT, 27% ridership increase

• Future condition with SMFe-BRT, 32% ridership increase

Note that the 27% ridership increase for the traditional BRT alternative was determined based on

the literature review. Given the advantageous features of SMFe-BRT over the traditional BRT, a

32% ridership increase with SMFe-BRT is expected and was, thus, evaluated. However, 27%

ridership increase for SMFe-BRT was also studied for comparison purposes.

To account for the flexibility of SMFe-BRT in meeting varying demand, the suggested

numbers of modules for different operating periods or different headways are shown in Table 7.

Note that for Cobb Parkway, a constant headway of 8 minutes was used for all peak and off-peak

periods, and three modules were assigned for peak periods and two modules were assigned for the

off-peak period. For GA 400, the numbers of modules are suggested values for different headways;

the actual assignment in the simulation may be different depending on demand. The maximum of

four modules allows for all boarding passengers being picked up at the busiest station.

73

TABLE 7
Number of Modules for SMFe Operations

Cobb Parkway GA-400

Ridership
Increase Time

Number of
modules

Carrying
Capacity Headway

Number
of

modules
Carrying
Capacity

AM peak 3 105 5 minutes 2 70
27% PM peak 3 105 10 minutes 3 105

Off peak 2 70 15 minutes 3 105
AM peak 3 105 20 minutes 4 140

32% PM peak 3 105
Off peak 2 70

5.4.2 Vissim Model Development: Existing Conditions

5.4.2.1 Vehicle Volume Inputs

As vehicle input data were obtained from different agencies along Cobb Parkway, the data

were compiled and organized in Excel® spreadsheets. The year 2019 is referenced as the base year,

and Year 2040 is referenced as the future year in this study. Given the Atlanta Braves’ stadium as

a development of regional impact (DRI) in the region, traffic generated by this DRI is considered

in deriving future traffic volumes.

5.4.2.2 Existing Public Transit: CobbLinc

The existing CobbLinc ridership data were obtained during the marked data collection

duration. The typical duration of the data collection period is about 3 months. Since Vissim inputs

are hourly based, the average ridership for AM peak, PM peak, and mid-day peak conditions were

derived and used.

5.4.3 Vissim Model Development: Future Conditions

5.4.3.1 Dedicated Bus Lanes

A key feature of the traditional BRT and SMFe-BRT is the dedicated bus lanes. For Cobb

Parkway, a center-running dedicated guideway will be added from the northernmost part to the

southernmost part of Cobb Parkway. From the center-running dedicated lanes, the express lanes

74

will be transformed into the side-running dedicated guideways [83]; see Figs. 37 and 38. In Vissim,

at center-running locations, the existing lanes will be shifted to the side and the proposed dedicated

guideways will be added in the middle.

FIGURE 37

Proposed Typical Section on Cobb Parkway – Center-Running Dedicated Guideway

FIGURE 38

Proposed Typical Section on Akers Mill Road – Side-Running Dedicated Guideway

For the GA 400 corridor, three transit alternatives were proposed: one heavy rail transit

(HRT) alternative and two BRT alternatives. The HRT alternative operates in an exclusive

guideway on either side of the GA 400 right-of-way. For the two BRT alternatives, one uses the

same alignment as the HRT alternative and the other operates within the planned Georgia

Department of Transportation (GDOT) managed lanes along GA 400.

75

5.4.3.2 Vehicle Volumes Prediction

Future conditions represent the year 2040. To properly account for background traffic growth

over time, vehicle volumes were factored up by an annual traffic growth rate using Equation 7

[103].

 𝐸𝐸𝑡𝑡+𝑚𝑚 = 𝐸𝐸𝑡𝑡 × (1 + 𝑔𝑔)𝑚𝑚 (7)

where

𝐸𝐸𝑡𝑡+𝑚𝑚 = Annual Average Daily Traffic (AADT) value of 𝑡𝑡 year, forecasted 𝑛𝑛 years in the

future;𝐸𝐸𝑡𝑡 = AADT observed in base year 𝑡𝑡; and

𝑔𝑔 = AADT annual growth rate.

Given the Atlanta Braves’ stadium as a DRI, its traffic impacts were considered as well.

An increase in public transit ridership is well expected with the introduction of the BRT

system. This would result in a decrease in network vehicle volumes. Considering the assumptions

made in ridership, the decrease in network traffic volumes was estimated and reflected in the future

traffic volumes. The future traffic volumes were derived by following the steps below.

1. From the existing traffic volumes, the year 2040 background traffic volumes were

estimated by applying a growth rate (Equation 7).

2. The project volumes from the Atlanta Braves Development of Regional Impact traffic

study [104] were obtained and adjusted to reflect 2040 project conditions.

3. The traffic volumes from (1) and (2) above were added to obtain total 2040 traffic volumes.

4. A traffic volume reduction by introducing the new public transit alternatives (described in

the next subsection) was applied to obtain effective future (2040) network traffic volumes.

76

5.4.3.3 Ridership Forecast

The introduction of either traditional BRT or SMFe-BRT is expected to increase the existing

public transportation ridership, which is 10.6% for commuters [87]. From the cities that have

already adopted BRT, a significant increase in ridership has been observed. Based on the BRT

Ridership Analysis [88], the ridership increase ranges from 27% to 84%. To be realistic and

conservative, the lower end of the ridership growth, 27%, was assumed for traditional BRT in this

study. Given the more advantageous features of the proposed SMFe-BRTs, an even higher ridership

is anticipated. The additional increase in ridership for SMFe-BRTs is estimated by referencing the

Ridership Responsiveness subsection in the Review of Literature in Section 5.3. Because the

ridership response and the change in wait time are interdependent, an assumption was made that

SMFe-BRT would reduce the passenger wait time by 5 minutes compared to the traditional BRT,

due to its operational flexibility. As such, the wait times for BRT and SMFe-BRT are estimated to

be 30 minutes and 25 minutes, respectively. Based on the variability of wait time on ridership at

peak-hours conditions, which was estimated to be −0.27 [89], the 17% reduction in wait time would

yield approximately a 5% reduction in ridership. In other words, the SMFe-BRT is expected to

have 5% additional ridership over the traditional BRT. The future ridership and reduction in

network vehicles are related by Equation 8.

 𝐹𝐹𝐹𝐹𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑑𝑑𝐹𝐹𝐹𝐹𝑅𝑅ℎ𝑅𝑅𝑖𝑖 = 𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝑅𝑅 𝑅𝑅𝐹𝐹𝑑𝑑𝐹𝐹𝑖𝑖𝐹𝐹𝑑𝑑 × 𝐴𝐴𝑣𝑣𝐹𝐹𝐹𝐹𝑎𝑎𝑔𝑔𝐹𝐹 𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹 𝑂𝑂𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑎𝑎𝑛𝑛𝑖𝑖𝑂𝑂 (8)

Given that the average vehicle occupancy in Metro Atlanta is very close to 1, it was assumed that

future ridership is equal to vehicles removed [90]. By following Step 3 in the Vehicle Volumes

Prediction subsection, the network vehicles reduced due to the ridership increase can be estimated

by Equation 9.

77

𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝑅𝑅 𝑅𝑅𝐹𝐹𝑑𝑑𝐹𝐹𝑖𝑖𝐹𝐹𝑑𝑑27% = 0.106 𝑉𝑉(3) + (0.106)(1 + 0.27)𝑉𝑉(3)

= (0.106)(2.27)𝑉𝑉(3)
(9)

where

𝑉𝑉(3) = the Step 3 results from the Vehicle Volumes Prediction section.

Equation 9 was used for the traditional and SMFe-BRT’s 27% increase in ridership. Likewise, with

SMFe-BRT’s 32% increase in ridership, the network vehicles reduced can be estimated by

Equation 10.

 𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝑅𝑅 𝑅𝑅𝐹𝐹𝑑𝑑𝐹𝐹𝑖𝑖𝐹𝐹𝑑𝑑32% = (0.106)(2.32)𝑉𝑉(3) (10)

5.4.3.4 Traffic Signal Timing

For Cobb Parkway, adjustments were made on future signal timing as additional

bus-dedicated guideways are added. Transit priority was coded in the simulation by using check-

in and check-out detectors at signalized intersections where the center dedicated BRT lanes are

proposed. When the check-in detector detects the BRT vehicle, the phase for the BRT is activated

if the current phase is red or is extended if the current phase is green. For the locations where the

signalized intersection is located just ahead of a proposed station, the standard presence detectors

are used instead. The typical method of reflecting the BRT signal priority in the existing signal

timing involves using additional signal phases (e.g., 9 and 10) for the BRT or SMFe-BRT vehicles

with check-in and check-out detectors for the dedicated lanes and adjusting signal timing for other

phases accordingly. An example at the Cobb Parkway and South Marietta Parkway intersection is

provided in Fig. 37. The assigned movements for each signal group (SG) are as follows:

SG 1: Northbound left; SG 2: Southbound through; SG 3: Westbound left; SG 4: Eastbound

through; SG 5: Southbound left; SG 6: Northbound through; SG 8: Westbound through;

SG 9: Dedicated lane Southbound; SG 10: Dedicated lane Northbound. Additional signal

78

groups 12 and 16 are assigned as overlap signals of SG 2 and SG 6. The primary purpose of the

overlapped signals is to allow green time for dedicated lanes when the southbound and northbound

phases, SG 2 and SG 6, are green. SG 302 and SG 306 are assigned to the dedicated lanes for transit

priority. Check-in detectors 312 and 316 are assigned to SG 302 and 306 each, and so as checkout

detectors 322 and 326. Fig. 39 captures the moment when a public transit vehicle enters the

intersection. As shown on the signal timing table, the phases are shortened once the vehicle checks

in with detector 316, and the green phase is given to SG 10 (SG 306).

FIGURE 39

Ring Barrier Signal Timing at the Intersection of Cobb Pkwy and S. Marietta Pkwy

5.4.3.5 Emission Estimation

It is essential to know the fuel type of the BRT. As part of MARTA’s goal for sustainability,

Compressed natural gas (CNG) buses will be introduced [105]. Following the recent trend, it was

assumed that the future BRTs will be run on CNG fuel.

The emission calculation based on CNG was computed using Equation 11. The equation is

formed based on the emission factors of each pollutant, multiplying the distance. The distance is

converted from the speed the vehicle is traveling at the time step. These data are collected from

Vissim every 10 seconds.

79

 𝐸𝐸𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡 (𝑔𝑔) = 𝐸𝐸𝐹𝐹 × 𝑣𝑣 ×
1 (ℎ𝐹𝐹)

3600 (𝑅𝑅𝐹𝐹𝑖𝑖)
× 10 (𝑅𝑅𝐹𝐹𝑖𝑖) (11)

where,

𝐸𝐸𝐹𝐹 = emission factor by pollutant (g/mile); and

𝑣𝑣 = the speed of the vehicle at the time step (mph).

Note that since SMFe-BRT modules will be fully electric, there will be no emissions from the

SMFe vehicle.

5.4.4 Multicriteria Evaluation

5.4.4.1 Weights for Decision Criteria

Similar groups of criteria from a previous study [101] were adopted in this study. Some

weights for subcriteria were reallocated or adjusted accordingly. The resulting priority profile is

shown in Table 8.

80

TABLE 8
AHP Priority Profile

Criteria Sub-Criteria Final Weights
Equivalent

Weights
0.46

Delay* 0.72 0.33
Wait time 0.28 0.13

0.13
CO 0.14 0.02
CO2 0.14 0.02

PM2.5 0.14 0.02
NOX 0.14 0.02

CH4 0.14 0.02

N2O 0.14 0.02
VOC 0.14 0.02

0.41
Capital Cost 0.22 0.09

O&M 0.33 0.13
Revenue 0.45 0.18

* Note for GA-400 Corridor, the delay criteria is removed.
 Wait time takes the whole weight of 0.46.

Transport

Finance

Environment
(Emissions)

81

5.4.4.2 Analytic Hierarchy Model

The hierarchical structure of the AHP model developed in this study is shown in Fig. 40.

Select a
better public
transit
alternative.

Transport

Environment

Finance

Network
Delay

Passenger
Wait Time

CO

CO2

PM 2.5

NOx

CH4

N2O

VOC

Capital Cost

Operations &
Maintenance

(O&M)

Revenue

Traditional
BRT

SMFe-BRT

FIGURE 40

Hierarchical Structure of the Model

Note that the performance measures for the first two criteria, i.e., Transport and Environment, were

derived from the network simulation runs. For assessing the finance of projects, regional cost data

and revenues from the estimated ridership were used, which are discussed in the following

subsection.

82

5.4.5 Finances

5.4.5.1 Capital Cost Estimate [106]

The “Connect Cobb: Northwest Transit Corridor Alternatives Analysis” includes the detailed

costs per the design alternatives. While categories such as stations, support facilities, and site work

capital costs will likely remain the same for BRT and SMFe alternatives, the guideway is expected

to be different. Since the SMFe-BRT will be 25% slimmer in body width than the regular BRT, the

construction and material costs for the guideway and track elements would be lower than the

traditional BRT system. The unit cost of grade-exclusive right-of-way was $992 per linear foot in

2012. This unit cost was factored up 1.09, based on the historical consumer price indices, to obtain

dollar value in the year 2019, which is $1,081.28 per linear foot [107]. The total costs for the

traditional BRT were calculated based on the estimated length of the proposed guideway, 11.9

miles for Cobb Parkway and 12 miles for GA 400. Because of the slimmer body of SMFe-BRT, a

25% reduction was applied for the material used for constructing the dedicated lane.

5.4.5.2 Operation and Maintenance Cost

According to the “Georgia Department of Transportation Fact Book,” a total of $14,561,221

was spent on asphalt and concrete roadway pavement maintenance and repair in 2012 [108]. That

breaks down to a unit cost of $303.36 per lane mile, provided the Department conducted the annual

maintenance of 48,000 lane miles in Georgia. The O&M unit cost also was adjusted to reflect dollar

value in 2019, resulting in $330.66 per lane mile [108].

For BRT O&M costs, the research team used data from Seattle, Washington, where BRT had

been adopted and operated. According to the Madison Area Transportation Planning Board, vehicle

operations and related costs are $75.61 per BRT annual revenue bus hours; vehicle maintenance–

related costs are $1.39 per BRT revenue bus miles; articulated bus premiums are $0.35 per BRT

revenue bus miles; ticket vending machine maintenance costs are $6,500 per machine unit; and

station and stop maintenance costs are $2,000 per directional bus stops [109].

83

Annual bus hours and bus miles were calculated using the simulated travel times and

distances for the BRT and SMFe-BRT lines. For daily bus revenue estimation, only simulated hours

were considered. For the Cobb Parkway corridor, the proposed bus stations are located in the center

of the roadway. For the O&M calculation purposes, it was assumed that the center-located bus

stations are shared for both directions. The number of ticket machines was assumed to be the same

as the number of bus stations.

5.4.5.3 Revenues

Annual revenues for the proposed systems were calculated using the simulated results. The

total boarding passengers for AM, PM, and off-peak conditions were extracted from the simulation

runs, and the annual total number of boarding passengers was estimated for weekday conditions. A

MARTA ticket costs $2.50 for a one-way trip. In 2014, approximately 75,500 people commuted to

work on MARTA per workday, among those approximately 41,500 people used MARTA because

they had no other alternative means of transportation [110]. Instead of purchasing single-way

tickets for $2.50 each trip, these people were assumed to purchase a monthly pass, which translates

to a lower per-trip cost. For estimation purposes, the monthly pass was assumed to be $80, which

is equivalent to $1.82 per trip based on the assumption of 22 weekdays per month and two trips per

weekday). The annual revenues were estimated by multiplying the numbers of boarding passengers

by the respective trip costs.

84

This page is intentionally left blank.

85

6 FINDINGS/RESULTS

6.1 Findings from Task 2

The developed power and propulsion system for each of the lead and follower module

prototypes works properly when operated by a remote-control unit, for motor throttling (forward

and reverse), steering, regenerative braking, and emergency braking. Outdoor tests indicate that the

design of these prototypes yields performance that meets or exceeds the technical objectives

(mainly straight-line speed and cornering speed) proposed for their power, propulsion, steering,

and braking systems.

6.2 Findings from Task 3

The developed leader–follower controller works properly in an indoor environment. In order

to solve the measurement delay problem, a dual-Kalman-filter strategy and a multi-thread

programming technique were integrated into the control scheme. The indoor experimental results

using two autonomous vehicles validated the effectiveness and robustness of the proposed

approach. Meanwhile, the researchers observed some challenges in the outdoor tests. In particular,

a regular laser sensor cannot obtain correct measurements in a bright outdoor environment.

6.3 Findings from Task 1

The scenarios studied for both the Cobb Parkway and GA 400 corridors are summarized in

Table 9.

86

TABLE 9
Summary of Study Scenarios

Corridor Scenario Study Period
BRT - 27% Ridership Increase AM Peak, PM Peak, Off-peak

Cobb Parkway SMFe - 27% Ridership Increase AM Peak, PM Peak, Off-peak
SMFe - 32% Ridership Increase AM Peak, PM Peak, Off-peak
BRT - 5 min headway AM Peak, PM Peak
BRT - 15 min headway Off-peak

GA-400 SMFe - 5 min headway AM Peak, PM Peak
SMFe - 10 min headway AM Peak, PM Peak
SMFe - 15 min headway Off-peak
SMFe - 20 min headway Off-peak

Five simulations were conducted for each study period corresponding to each scenario in Table 9.

This resulted in 45 (i.e., 9×5) simulation runs for each corridor.

6.3.1 Cobb Parkway Corridor Results

6.3.1.1 Network Performance

The network results from simulations for the Cobb Parkway corridor are summarized in

Table 10. Note that the results are the averages of five simulation runs.

As shown in Table 10, the Average Delay for BRT 27% and SMFe 27% are relatively the

same for the AM peak condition. For the PM peak condition, SMFe 27% has a slightly higher

Average Delay than the BRT 27%. For the off-peak condition, SMFe 27% shows a slightly lower

Average Delay than BRT 27%. The same trend applies to the metrics of Average Stop Delay and

Average Stops.

The poorer performance of SMFe during the PM peak condition (which is worse than the

AM peak condition) could be attributable to the fact that the slimmer SMFe modules, which are

virtually coupled by design, will result in an overall longer body than the traditional BRT vehicle.

Given the transit signal priority, the direct implication of this design feature is a longer disruption

to the signal operations than its counterpart BRT vehicle because of a longer dwell time for the

transit phase. This likely caused more stops or longer delays to other vehicles in the conflicting

87

TABLE 10
Cobb Parkway – Network Results from Vissim Simulations

Performance AM Peak PM Peak Off Peak
Indicator BRT 27% SMFe 27% SMFe 32% BRT 27% SMFe 27% SMFe 32% BRT 27% SMFe 27% SMFe 32%

Average Delay 205 205 200 212 219 214 98 96 94
Average Stop Delay 147 147 143 161 167 163 64 62 61
Average Stops 2.73 2.73 2.65 2.71 2.75 2.69 1.92 1.88 1.85
Average Delay 341 447 445 342 489 492 519 454 454
Average Stop Delay 178 125 121 179 147 153 353 293 285
Average Stops 7.05 5.38 5.31 7.26 6.38 6.36 6.97 6.47 6.90
Total Alighting Passengers 1,890 1,979 1,838 2,216 1,957 1,793 2,418 2,020 1,959
Total Boarding Passengers 2,105 2,280 1,945 2,358 2,192 1,919 2,572 2,278 2,085
Total Occupancy 3,515 4,047 3,282 4,315 4,098 3,377 4,374 4,052 3,744
Total Waiting Passengers 12,227 14,926 11,696 15,838 14,474 11,565 15,352 14,754 13,161
Total Waiting Time(sec.) 107,815 119,313 113,776 121,625 122,961 110,942 128,768 117,520 118,004
Average Waiting Time (sec./person) 8.82 7.99 9.73 7.68 8.50 9.59 8.39 7.97 8.97

Highway
Vehicles

Transit
Vehicles

Transit
Users

88

traffic flow. It also depends on the time point in the signal cycle at which the SMFe vehicle

approaches each signalized intersection along the arterial. This effect would be nonexistent if the

SMFe-bus operates on a freeway. On the other hand, the enhanced performance of the SMFe-BRT

during the off-peak condition is due to the reduced number of modules (i.e., two modules for the

off-peak condition as compared to three modules for the AM and PM peak conditions) where transit

signal priority would cause less disruption to the general traffic flow.

Additional automobile users switching to SMFe-BRT will lead to increased ridership. For

the SMFe 32% scenario, this will result in a slightly reduced network vehicle volume, which

explains the slight reduction in Average Delay, Average Stop Delay, and Average Stops as

compared to the SMFe 27% scenario. It should be noted that the possible latent demand of network

traffic was not explicitly accounted for in the simulations.

 By comparing SMFe 32% with BRT 27%, all three metrics (i.e., Average Delay, Average

Stop Delay, and Average Stops) are lower for SMFe 32%, which signals a better performance of

SMFe for the AM peak condition. However, for the PM peak condition, the SMFe 32% still results

in a higher Average Delay and Average Stop Delay since the PM peak condition is worse than the

AM peak condition. This implies that additional ridership increase is required to outperform the

BRT 27%. However, if measured by Average Stops, SMFe 32% outperforms BRT 27%.

The performance summary for the transit vehicle in Table 10 reveals a similar trend as

discussed previously, except that SMFe has a lower Average Stops and Average Stop Delay.

Based on the statistics on transit users, for SMFe 27%, the Average Waiting Time is lower

for the AM peak and off-peak conditions because more passengers were served during those

periods as compared to BRT 27%. However, the Average Waiting Time for SMFe 27% becomes

higher than for BRT 27% in the PM peak condition due to a smaller number of users served because

of its longer service time. Increasing ridership to 32% results in a longer Average Waiting Time.

This is due to the fact that three modules were used with an 8-minute headway for both the

89

27% SMFe and 32% SMFe scenarios. For the SMFe 32% scenario, all transit users waiting at each

station may not be picked up at once, resulting in an overall longer Average Waiting Time.

6.3.1.2 Evaluation based on Multiple Criteria

Multicriteria evaluation was conducted based on three criteria: (1) Transport,

(2) Environment, and (3) Finance. Each criterion includes a number of subcriteria. For example,

the Transport criterion was evaluated based on two subcriteria: Average Delay and Average

Passenger Wait Time for transit. Those performance data were compiled from network simulation

runs. The Environmental impact was evaluated based on a list of subcriteria of various types of

emissions, which are also obtained from network simulation runs. The Finance criterion considers

three subcriteria: Capital Cost, Operations and Maintenance, and Revenue. The values derived for

those various subcriteria are summarized in Table 11. As seen, the highest emission was CO2,

followed by CO, NOx, and CH4. SMFe had lower capital cost because of its narrower module

bodies, which require 25% less material for the dedicated lane. It should be pointed out that right-

of-way costs were not considered in this study since it varies dramatically by locations. Significant

capital savings can be reaped if the right-of-way costs were considered. The O&M costs are similar.

SMFe 32% had a higher revenue because of the additional ridership.

TABLE 11
Cobb Parkway – Summary of Subcriteria Values

Criteria Sub Criteria AM PM
OFF-
PEAK AM PM

OFF-
PEAK AM PM

OFF-
PEAK

Avg. Delay (sec./veh) 204.99 204.57 98.28 204.78 215.24 95.91 199.85 219.93 93.54
Avg. Passenger Wait
Time (sec./person)

7.68 8.50 9.59 8.82 7.99 9.73 8.39 7.97 8.97

CO2 (g) 36926.39 37724.26 36665.99
CO (g) 97.32 99.42 96.64
PM 2.5 (g) 0.03 0.03 0.03
NOx (g) 35.78 36.55 35.53
CH4 (g) 32.33 33.03 32.10
N2O (g) 2.87 2.93 2.85
VOC (g) 0.28 0.29 0.28
Capital Cost
O&M
Revenue

BRT 27% SMFe 27% SMFe 32%

Transport

Environment
(Emissions)

Finance
152,995,920$ 114,746,940$ 114,746,940$

849,197$ 862,428$ 862,428$
3,568,033$ 3,469,478$ 3,804,900$

90

Based on the subcriteria values in Table 11, the AHP model was applied by comparing two

scenarios: (1) BRT 27% vs. SMFe 27%, and (2) BRT 27% vs. SMFe 32%, for three operating

periods: AM peak, PM peak, and off-peak. The results are summarized in Table 12.

TABLE 12
Cobb Parkway – Multicriteria Evaluation Results

Operating Hour Comparison BRT SMFe Preferred
AM Peak BRT 27% and SMFe 27% 0.435 0.565 SMFe
PM Peak BRT 27% and SMFe 27% 0.432 0.568 SMFe
Off Peak BRT 27% and SMFe 27% 0.429 0.571 SMFe
AM Peak BRT 27% and SMFe 32% 0.430 0.570 SMFe
PM Peak BRT 27% and SMFe 32% 0.428 0.572 SMFe
Off Peak BRT 27% and SMFe 32% 0.424 0.576 SMFe

As shown in Table 12, with a higher overall score, SMFe is preferred for all six comparisons.

6.3.2 GA 400 Corridor Results

GA 400 is a freeway corridor, which is different than Cobb Parkway. As such, transit signal

priority is not considered as an influential factor to the network performance. The main variable in

this setting was the operating time headway of transit vehicles. To compare the two transit

alternatives, BRT and SMFe, in a realistic fashion, the headway was varied by the operating time

period. A 5-minute headway was used for AM peak and PM peak periods for BRT. Two headways,

5 minutes and 10 minutes, were used for SMFe. For the off-peak period, a 15-minute headway was

used for BRT and two headways of 15 minutes and 20 minutes were used for SMFe. The goal of

using two headway settings was to examine the operational flexibility of SMFe by varying the

number of modules.

6.3.2.1 Network Performance

The network results from simulations for the GA 400 corridor are summarized in Table 13.

As shown in Table 13, the Average Waiting Time was significantly lower, nearly in half, if SMFe

was operated in 10-minute headway as compared to 5-minute headway. The Total Waiting

91

Passengers were relatively the same for the AM peak and PM peak periods, but the Total Waiting

Time was reduced by almost 50%. By referencing the SMFe operations settings in Table 7, a

varying number of modules (2–4) was suggested based on the headway. The waiting time is

dramatically reduced due to operating more modules with a longer headway. However, for the off-

peak period when the demand is not an issue, increasing headway will in turn increase the Average

Waiting Time because passengers have to wait longer times at stations due to the longer headway.

For GA 400, the Average Passenger Wait Time was used as the only subcriterion for the

Transport criterion because of the separated operation of transit vehicles from other vehicles. Note

the distinction between GA 400 and Cobb Parkway, which is an arterial corridor where the transit

vehicles interact with other vehicles at signalized intersections with transit signal priority.

Other subcriteria values are summarized in Table 14. Note that the highest emission was CO2,

followed by CO, NOx, and CH4. The amounts of emissions are larger than those of Cobb Parkway

because there is a much heavier traffic volume on GA 400. For the off-peak period, the lower

O&M cost is due to the longer headway (less frequent bus operations) and the lower revenue results

from a lower ridership.

92

TABLE 13
GA 400 – Transit Results from Vissim Simulations

AM Peak PM Peak Off Peak
Performance BRT SMFe SMFe BRT SMFe SMFe BRT SMFe SMFe

Indicator hw = 5 min hw = 5 min hw = 10min hw = 5 min hw = 5 min hw = 10min hw = 15 min hw = 15 min hw = 20min
Total Alighting Passengers 547 540 542 543 537 554 365 486 475
Total Boarding Passengers 2,798 2,808 2,699 2,682 2,649 2,592 1,248 2,104 2,070
Total Occupancy 5,158 5,114 5,068 5,006 4,936 4,916 2,810 3,921 3,916
Total Waiting Passengers 6,312 6,270 6,362 6,211 6,072 6,092 21,114 15,861 5,125
Total Waiting Time(sec.) 190,441 184,527 90,431 190,460 186,626 91,520 75,364 67,339 48,713
Average Waiting Time (sec./person) 30.17 29.43 14.22 30.66 30.74 15.02 3.57 4.25 9.50

TABLE 14
GA 400 – Summary of Subcriteria Values

5 min 5 min 15 min 5 min 5 min 15 min 10 min 10 min 20 min
headway headway headway headway headway headway headway headway headway

Criteria Sub Criteria AM PM OFF-PEAK AM PM OFF-PEAK AM PM OFF-PEAK

Transport
Avg. Passenger Wait
Time (sec./person)

30.17 30.66 3.57 29.43 30.74 4.25 14.22 15.02 9.50

CO2 (g) 137,547.10 137,605.00 45,982.20
CO (g) 362.51 362.67 121.19
PM 2.5 (g) 0.10 0.10 0.03
NOx (g) 133.27 133.32 44.52
CH4 (g) 120.43 120.48 40.26
N2O (g) 10.70 10.70 3.58
VOC (g) 1.04 1.04 0.35
CAPITAL COST
O&M 188,279$ 187,784$ 99,537$ 197,994$ 197,868$ 103,379$ 128,550$ 128,511$ 79,398$
REVENUES 1,493,251$ 1,557,729$ 694,675$ 1,475,210$ 1,563,297$ 1,171,638$ 1,443,027$ 1,502,828$ 1,152,484$

BRT SMFe

Environment
(Emissions)

Finance
152,995,920$ 114,746,940$ 114,746,940$

93

Based on the subcriteria values in Table 14, the AHP model was applied by comparing

BRT and SMFe operations subject to the same and different time headways, which were varied by

time periods. The results are summarized in Table 15. All comparisons, except the off-peak period

with the longer headways (i.e., 15 minutes for BRT and 20 minutes for SMFe), indicate that SMFe

is a better option because of an overall higher evaluation score. In particular, operating SMFe at

10-minute headway during both AM peak and PM peak periods is clearly superior to operating

BRT at 5-minute headway during the same peak periods. This is indicated by the nearly doubled

evaluation scores of SMFe compared to BRT (highlighted rows in Table 15).

TABLE 15
GA 400 – Multicriteria Evaluation Results

Operating Hour Comparison BRT SMFe Preferred
AM Peak 5 min headway for both BRT and SMFe 0.428 0.572 SMFe
PM Peak 5 min headway for both BRT and SMFe 0.430 0.570 SMFe
Off Peak 15 min headway for both BRT and SMFe 0.426 0.574 SMFe
AM Peak 5 min headway for BRT and 10 min headway for SMFe 0.334 0.666 SMFe
PM Peak 5 min headway for BRT and 10 min headway for SMFe 0.338 0.662 SMFe
Off Peak 15 min headway for BRT and 20 min headway for SMFe 0.504 0.496 BRT

94

This page is intentionally left blank.

95

7 CONCLUSIONS

This research project sought to improve upon conventional BRT via a novel vehicle concept

that the research team called the SMFe-bus. The key features of this vehicle are: (1) its narrower

width (25–50% slimmer than a regular bus), requiring less right-of-way; (2) that it consists of a

lead module with a driver cab, and a few driverless follower modules/cars trailing behind it; (3) that

its follower modules can be easily attached and detached from the preceding module by way of

“virtual coupling” to meet varying passenger demand by time of day with optimized operations;

and (4) given the smaller size of the modules, that each of them are self-propelled by in-wheel

electric motors, which will allow the modules to better negotiate turns while being more friendly

to the environment than fossil-fuel engines. The significance of this project is that it will lead to a

system that costs less than conventional BRT (by reducing right-of-way and construction costs),

while providing an equal or better level of service, and is more environmentally friendly.

This initial phase of the planned multi-stage research project was aimed at achieving the

following objectives regarding the Slim Modular Flexible Electric Bus Rapid Transit (SMFe-BRT)

concept and the Slim Modular Flexible Electric Bus (SMFe-bus) vehicle:

1. Demonstrate a higher benefit-to-cost ratio for the SMFe-BRT approach compared to the

existing BRT approach (using Cobb County’s BRT proposal and MARTA’s GA 400

Transit Initiative’s BRT option as case studies), and determine infrastructure design and

operational feature requirements

2. Develop two-wheel-drive prototype lead and follower SMFe-bus modules with 3-hp

motors and 150-Ah battery pack, capable of speeds greater than 15 mph

3. Demonstrate straight-line following by the two-module prototype SMFe-bus at 15 mph

within an 8-ft-wide path, and also proper tracking of 90-degree cornering at 4 mph within

the swept path of a 40-ft city transit bus

96

The following was accomplished:

1. For the feasibility study, the SMFe-BRT was evaluated against the traditional BRT at two

projects sites (Cobb Parkway and GA 400) in Georgia, where BRT options are currently

considered. This evaluation was conducted in a multicriteria context. Network operations

data, including delay, stops, emissions, and revenues, were obtained from multiple

simulation runs for different scenarios. Regional cost data were utilized to estimate capital

and O&M costs. The key findings of this study are as follows:

a. The SMFe-BRT service times are generally longer than those of the traditional BRT

due to the overall longer vehicle body when operating during peak periods of demand.

The increased number of modules during the peak periods provides additional carrying

capacity, but also increases the service time for boarding and alighting at busy stations.

b. When operating along an arterial corridor, because of transit signal priority, the

dwelling time for SMFe-BRT phase would be longer than that for the traditional BRT

during the peak periods because of the longer body of the SMFe-bus (consisting of

virtually coupled multiple modules) than the traditional BRT vehicle. This likely

disrupts traffic flow of other vehicles, especially those in conflicting movements during

the peak periods. As a result, the overall network delay may be increased. Note that the

operational benefits expected from the SMFe-BRT mainly include less waiting time

for transit riders (because of demand-responsiveness) and fewer delays or congestion

for other vehicles (because of reduced network traffic due to shifted trips to the

SMFe-BRT mode). Implementing SMFe-BRT would be desirable if those operations

benefits outweigh the adverse effect of traffic signal disruption to other vehicles.

c. When operating along a freeway corridor, the headway would be a key variable for

SMFe-BRT operations. As demonstrated in this study, significant benefits can be

97

reaped if proper headways are selected in accordance with operating periods of

different demands.

d. Fuel type is one of the main differences between the traditional BRT and the

SMFe-BRT. The traditional BRT in this study was assumed to be powered by

compressed natural gas, while SMFe-BRT will be fully electric. As such, SMFe-BRT

is assumed to have zero emissions. However, this is contingent upon the assumption

that the electricity driving the SMFe vehicle is generated from a clean energy source.

2. The developed power and propulsion system for each of the lead and follower module

prototypes works properly when operated by a remote-control unit, for motor throttling

(forward and reverse), steering, regenerative braking, and emergency braking. Outdoor

tests indicate that the design of these prototypes yields performance that meets or exceeds

the technical objectives (mainly straight-line speed and cornering speed) proposed for their

power, propulsion, steering, and braking systems.

3. The developed leader–follower controller works properly in an indoor environment. In

order to solve the measurement delay problem, a dual-Kalman-filter strategy and a multi-

thread programming technique were integrated into the control scheme. The indoor

experimental results using two autonomous vehicles validated the effectiveness and

robustness of the proposed approach, and demonstrated module straight-line tracking up to

4 mph for time intervals of several seconds long. Meanwhile, researchers observed some

challenges in the outdoor tests. Specifically, a regular laser sensor cannot obtain correct

measurements in a bright outdoor environment.

Hence, this project fully accomplished two of its three objectives, while partially reaching

the objective of demonstrating straight-line following by the two-module prototype SMFe-bus at

15 mph, and also proper tracking of 90-degree cornering at 4 mph.

98

This page is intentionally left blank.

99

8 RECOMMENDATIONS

Although substantial progress has been made toward a better BRT system, additional

research and development work is needed, especially to improve the SMFe-bus’ module tracking

performance, to make the proposed SMFe-BRT system a reality.

100

This page is intentionally left blank.

101

9 REFERENCES

[1] T. Brown and R. Paling, “Getting More from Our Roads: An Evaluation of Special
Vehicle Lanes on Urban Arterials,” NZ Transport Agency, Research Report 557, 2014,
135p.

[2] Bureau of Transportation Statistics, “Georgia transportation by the numbers,” January
2016, https://www.bts.gov/sites/bts.dot.gov/files/legacy/georgia.pdf.

[3] “Transportation Remains Top Concern For Metro Atlanta Residents,”
https://patch.com/georgia/atlanta/transportation-remains-top-concern-metro-atlanta-
residents.

[4] C.M. Nichols, “Chicago MPC builds its case for top-tier BRT: Community contributions
stretch well beyond faster bus service,” Bus Ride, Vol. 50, No. 1, 2014, pp. 22–23.

[5] T. Orosz and E. Beaton, “Select Bus Services delivers BRT to New York City,” Bus
Ride, Vol. 50, No. 1, 2014, pp. 24–25.

[6] D.R. Heres, D. Jack, and D. Salon, “Do public transport investments promote urban
economic development? Evidence from bus rapid transit in Bogotá, Colombia,”
Transportation, Vol. 41, No. 1, 2014, pp. 57–74.

[7] L. Ma, R. Ye, and H. Titheridge, “Capitalization Effects of Rail Transit and Bus Rapid
Transit on Residential Property Values in a Booming Economy: Evidence from Beijing,”
Transportation Research Record: Journal of the Transportation Research Board,
No. 2451, 2014, pp. 139–148.

[8] P. May, “vivaNext – Highway 7 East (H3) BRT Dedicated Lanes, Transportation 2014:
Past, Present, Future,” 2014 Conference and Exhibition of the Transportation Association
of Canada.

[9] C.E. Siedler, “Can Bus Rapid Transit be a Sustainable Means of Public Transport in Fast
Growing Cities? Empirical Evidence in the Case of Oslo,” Transportation Research
Procedia, Vol. 1, No. 1, 2014, pp. 109–120.

[10] D. Rutherford, “sbX brings BRT to the Inland Empire,” Bus Ride, Vol. 50, No. 4, 2014,
pp. 26–27.

[11] A.L. Dodero, P.M. dos Santos da Rocha, J.J. Hernandez, et al., “Evaluating
Improvements in Bus Rapid Transit in Mexico City, Mexico: How Feasible Is It to
Improve a Consolidated System?” Transportation Research Record: Journal of the
Transportation Research Board, No. 2451, 2014, pp. 88–96.

[12] M.A. Ortiz and J.P. Bocarejo, “TRANSMILENIO BRT Capacity Determination Using a
Microsimulation Model in VISSIM,” Transportation Research Board 93rd Annual
Meeting, 2014, 17p.

[13] D. Klepal, “Cobb seeks SPLOST cash for rapid bus system,” The Atlanta Journal-
Constitution, http://www.ajc.com/news/news/cobb-seeks-splost-cash-for-rapid-bus-
system/ngYTW/. [Accessed Feb. 29, 2016].

[14] J. Magnusson, “BRT Brings More Bang for the Buck,” Sustainable Transport, Vol. 25,
2014, pp. 8–9.

http://trid.trb.org/view/2014/M/1335711
http://trid.trb.org/view/2014/M/1335711
http://trid.trb.org/view/2014/C/1304360
http://trid.trb.org/view/2014/C/1286844
http://trid.trb.org/view/2014/C/1286844
http://trid.trb.org/view/2014/C/1344014
http://trid.trb.org/view/2014/C/1344014
http://trid.trb.org/view/2014/C/1343599
http://trid.trb.org/view/2014/C/1326111
http://trid.trb.org/view/2014/C/1326111
http://trid.trb.org/view/2014/C/1311658
http://trid.trb.org/view/2014/C/1289492
http://trid.trb.org/view/2014/C/1289492
http://trid.trb.org/view/2014/C/1289492
http://trid.trb.org/view/2014/C/1289767
http://trid.trb.org/view/2014/C/1289767
http://www.ajc.com/news/news/cobb-seeks-splost-cash-for-rapid-bus-system/ngYTW/
http://www.ajc.com/news/news/cobb-seeks-splost-cash-for-rapid-bus-system/ngYTW/
http://trid.trb.org/view/2014/C/1311367

102

[15] D. Wickert, “MARTA: No longer a dirty word in Gwinnett?” The Atlanta Journal-
Constitution, http://www.myajc.com/news/news/local-govt-politics/marta-no-longer-a-
dirty-word-in-gwinnett/nqS4g/. [Accessed Feb. 29, 2016].

[16] X. Wang and Q. Li, “Utilization of the spare capacity of exclusive bus lanes based on a
dynamic allocation strategy,” WIT Transactions on the Built Environment, Vol. 138,
2014, pp. 173–189.

[17] T. Liu, A. Ceder, J. Ma, and G. Wei, “CBVC-B: A System for Synchronizing Public-
Transport Transfers Using Vehicle-to-Vehicle Communication,” Procedia – Social and
Behavioral Sciences, Vol. 138, 2014, pp. 241–250.

[18] M.E. Mallia and K. Simpson, Wireless Global Positioning System Fleet Tracking System
at the University at Albany, NYSERDA Report 14-27, 2014, 34p.

[19] G. Ellem, C. Matthews, and N. Tyson, “Fast charge batteries and in route charging: an
emerging option for low-cost freight electrification,” CORE 2014, Rail Transport for a
Vital Economy, Conference on Railway Engineering, Adelaide, South Australia,
5–7 May 2014.

[20] Y.C. Kim, K-H. Yun, and K-D. Min, “Automatic guidance control of an articulated all-
wheel-steered vehicle,” Vehicle System Dynamics, Vol. 52, No. 4, 2014, pp. 456–474.

[21] M. Conte, F. Vellucci, M. Ceraolo, et al., “Energy storage system studies for heavy-duty
hybrid electric vehicles in the EC HCV project,” Transport Research Arena (TRA) 5th
Conference: Transport Solutions from Research to Deployment, 2014, 10p.

[22] K. Amagai, T. Takarada, M. Funatsu, and K. Nezu, “Development of Low-CO₂-emission
Vehicles and Utilization of Local Renewable Energy for the Vitalization of Rural Areas
in Japan,” IATSS Research, Vol. 37, No. 2, 2014, pp. 81–88.

[23] M.J. Bradley & Associates, Updated Comparison of Energy Use & CO₂ Emissions from
Different Transportation Modes, American Bus Association, 2014, 17p.

[24] A. Lajunen, “Energy consumption and cost–benefit analysis of hybrid and electric city
buses,” Transportation Research Part C: Emerging Technologies, Vol. 38, 2014,
pp. 1–15.

[25] A. Alam, B. Besselink, V. Turri, J. Martensson, and K.H. Johansson, “Heavy-Duty
Vehicle Platooning for Sustainable Freight Transportation: A Cooperative Method to
Enhance Safety and Efficiency,” in IEEE Control Systems, Vol. 35, No. 6, Dec. 2015,
pp. 34–56.

[26] T. Zhao and Y. Wang, “A neural-network based autonomous navigation system using
mobile robots,” Proc. Intl. Conf. Control Automation Robotics & Vision (ICARCV),
December 2012.

[27] D. Hidalgo and J.C. Muñoz, “A review of technological improvements in bus rapid
transit (BRT) and buses with high level of service (BHLS),” Public Transport, Vol. 6,
No. 3, 2014, pp. 185–213.

[28] Proterra webpage: https://www.proterra.com/products/

[29] C. Curry, “Lithium-ion Battery Costs: Squeezed Margins and New Business Models,”
July 10, 2017, https://about.bnef.com/blog/lithium-ion-battery-costs-squeezed-margins-
new-business-models/. [Accessed July 26, 2018].

[30] “Proterra DuoPower™: Overview and Technical Specifications,” AxleTech webpage,
https://www.axletech.com/en/products/electric-solutions/proterra-duopowertm.

http://trid.trb.org/view/2014/C/1315602
http://trid.trb.org/view/2014/C/1315602
http://trid.trb.org/view/2014/C/1317599
http://trid.trb.org/view/2014/C/1317599
http://trid.trb.org/view/2014/M/1320455
http://trid.trb.org/view/2014/M/1320455
http://trid.trb.org/view/2014/C/1332598
http://trid.trb.org/view/2014/C/1332598
http://trid.trb.org/view/2014/C/1308670
http://trid.trb.org/view/2014/C/1308670
http://trid.trb.org/view/2014/C/1327845
http://trid.trb.org/view/2014/C/1327845
http://trid.trb.org/view/2014/C/1305374
http://trid.trb.org/view/2014/C/1305374
http://trid.trb.org/view/2014/C/1305374
http://trid.trb.org/view/2014/M/1308465
http://trid.trb.org/view/2014/M/1308465
http://trid.trb.org/view/2014/C/1305730
http://trid.trb.org/view/2014/C/1305730
http://trid.trb.org/view/2014/C/1329414
http://trid.trb.org/view/2014/C/1329414

103

[31] L. de Novellis, A. Sorniotti, P. Gruber, et al., Torque Vectoring for Electric Vehicles with
Individually Controlled Motors: State-of-the-Art and Future Developments In: 26th
International Electric Vehicle Symposium (EVS26), May 2012, Los Angeles, CA.

[32] “Elaphe Technology,” Elaphe webpage, http://in-wheel.com/technology/.

[33] “Key Features,” Protean webpage, https://www.proteanelectric.com/protean-drive/.

[34] “Elaphe in-wheel electric motors,” Elaphe webpage, http://in-wheel.com/.

[35] “Motor Controller | EV Parts – Kelly Controls, LLC,” Kelly webpage,
http://kellycontroller.com/brushless-hub-motors-c-
21_62.html?osCsid=rt8fo3dihss7dka06iva3gvbe5.

[36] “Kelly Controller KLS7222H, 24V-72V, 220A, Sealed Sinusoidal Wave BLDC Motor
Controller,” Kelly webpage, http://kellycontroller.com/kls7222h24v-72v220asealed-
sinusoidal-wave-bldc-motor-controll-p-1448.html. [Accessed Jan. 9, 2017].

[37] “Kelly Controller Hub Motor 48V 2KW (disc-brake),” Kelly webpage,
http://kellycontroller.com/hub-motor-48v-2kwdisc-brake-p-164.html. [Accessed Jan. 9,
2017].

[38] “Turnigy 5X 5Ch Mini Transmitter and Receiver (Mode 2),” Hobby King webpage,
https://hobbyking.com/en_us/turnigy-5x-5ch-minitransmitter-and-receiver-mode-2.html.
[Accessed Jan. 9, 2017].

[39] “Raspberry Pi 3 Model B,” Raspberry Pi Foundation webpage,
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/. [Accessed Jan. 9, 2017].

[40] “MCP4725 12-Bit DAC with Raspberry Pi: Overview,” Adafruit webpage,
https://learn.adafruit.com/mcp4725-12-bit-dac-with-raspberry-pi/overview. [Accessed
Jan. 9, 2017].

[41] U.S. Department of Transportation, “Connect Cobb Corridor Environmental
Assessment,” Federal Transit Administration, April 2015,
https://cobbcounty.org/images/documents/dot/studies/ConnectCobb/EA/Connect_Cobb_
Corridor_EA_April_2015_FINAL.pdf. [Accessed Jan. 9, 2017].

[42] Electropaedia, “Electric Vehicle Charging Infrastructure,”
http://www.mpoweruk.com/infrastructure.htm. [Accessed Jan. 9, 2017].

[43] A. Loria, J. Dasdemir, and N. Jarquin-Alvarez, “Decentralized formation-tracking control
of autonomous vehicles on straight paths,” IEEE 53rd Annual Conference on Decision
and Control, December 2014.

[44] R.D. Cruz-Morales, M. Velasco-Villa, R. Castro-Linares, and E.R. Palacios-Hernandez,
“Leader–follower formation for nonholonomic mobile robots: Discrete-time approach,”
International Journal of Advanced Robotic Systems, Vol. 13, No. 2, 2016.

[45] C. Paliotta and K.Y. Pettersen, “Leader–follower synchronization with disturbance
rejection,” 2016 IEEE Conference on Control Applications, September 2016.

[46] X. Chen, P. Yan, and A. Serrani, “On input-to-state stability-based design for
leader/follower formation control with measurement delays,” International Journal of
Robust and Nonlinear Control, Vol. 23, No. 13, 2013, pp. 1433–1455.

[47] S. Mori and T. Namerikawa, “Formation control considering disconnection of network
links for a Multi-UAV system: An LMI approach,” Journal of Robotics and
Mechatronics, Vol. 28, No. 3, 2016, pp. 343–350.

104

[48] C.B. Low, “A flexible leader–follower formation tracking control design for
nonholonomic tracked mobile robots with low-level velocities control systems,” 18th
IEEE International Conference on Intelligent Transportation Systems, September 2015.

[49] E. Bicho and S. Monteiro, “Formation control for multiple mobile robots: a non-linear
attractor dynamics approach,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, October 2003.

[50] M.A. Dehghani, and M.B. Menhaj, “Communication free leader–follower formation
control of unmanned aircraft systems,” Robotics and Autonomous Systems, Vol. 80, 2016,
pp. 69–75.

[51] K. Maeda and E. Konaka, “Cruise control of a two-wheeled vehicle based on MPC to
predict the trajectory of a preceding vehicle,” 53rd Annual Conference of the Society of
Instrument and Control Engineers of Japan (SICE), September 2014.

[52] A. Saxena, H. Li, D. Goswami, and C.B. Math, “Design and analysis of control strategies
for vehicle platooning,” IEEE 19th International Conference on Intelligent
Transportation Systems, November 2016.

[53] W.B. Dunbar and D.S. Caveney, “Distributed receding horizon control of vehicle
platoons: Stability and string stability,” IEEE Transactions on Automatic Control,
Vol. 57, No. 3, 2012, pp. 620–633.

[54] M. Saska, V. Vonasek, T. Krajnik, and L. Peuil, “Coordination and navigation of
heterogeneous MAV-UGV formations localized by a ‘hawkeye’-like approach under a
model predictive control scheme,” International Journal of Robotics Research, Vol. 33,
No. 10, 2014, pp. 1393–1412.

[55] Z. Sun and Y. Xia, “Receding horizon tracking control of unicycle-type robots based on
virtual structure,” International Journal of Robust and Nonlinear Control, Vol. 26,
No. 17, 2016, pp. 3900–3918.

[56] H. Koroglu and P. Falcone, “State feedback synthesis for homogenous platoons under the
leader and predecessor following scheme,” 13th European Control Conference, June
2014.

[57] H. Koroglu and P. Falcone, “Controller synthesis for a homogenous platoon under leader
and predecessor following scheme,” 2014 American Control Conference, June 2014.

[58] C. Chen, Y. Xing, V. Djapic, and W. Dong, “Distributed formation tracking control of
multiple mobile robotic systems,” IEEE 53rd Annual Conference on Decision and
Control, December 2014.

[59] H. Koroglu and P. Falcone, “Joint synthesis of dynamic feed-forward and static state
feedback for platoon control,” IEEE 53rd Annual Conference on Decision and Control,
December 2014.

[60] C. Chen, F.D.L. Torre, and W. Dong, “Distributed exponentially tracking control of
multiple wheeled mobile robots,” 2014 American Control Conference, June 2014.

[61] L. Brinon-Arranz, A. Pascoal, and A.P. Aguiar, “Adaptive leader–follower formation
control of autonomous marine vehicles,” IEEE 53rd Annual Conference on Decision and
Control, December 2014.

[62] T. Yucelen and E.N. Johnson, “Control of multivehicle systems in the presence of
uncertain dynamics,” International Journal of Control, Vol. 86, No. 9, pp. 1540–1553,
2013.

105

[63] H. Wu, M. Karkoub, and C. Hwang, “Mixed Fuzzy Sliding-Mode Tracking with
Backstepping Formation Control for Multi-Nonholonomic Mobile Robots Subject to
Uncertainties: Category (3), (5),” Journal of Intelligent and Robotic Systems: Theory and
Applications, Vol. 79, No. 1, 2015, pp. 73–86.

[64] S. Hung, S.N. Givigi, and A. Noureldin, “A Dyna-Q (Lambda) approach to flocking with
fixed-wing UAVs in a stochastic environment,” IEEE International Conference on
Systems, Man, and Cybernetics, October 2015.

[65] Z. Peng, D. Wang, Z. Chen, X. Hu, and W. Lan, “Adaptive dynamic surface control for
formations of autonomous surface vehicles with uncertain dynamics,” IEEE Transactions
on Control Systems Technology, Vol. 21, No. 2, 2013, pp. 513–520.

[66] F. Rinaldi, S. Chiesa, and F. Quagliotti, “Linear quadratic control for quadrotors UAVs
dynamics and formation flight,” Journal of Intelligent and Robotic Systems: Theory and
Applications, Vol. 70, No. 1-4, 2013, pp. 203–220.

[67] J. Ghommam, H. Mehrjerdi, and M. Saad, “Robust formation control without velocity
measurement of the leader robot,” Control Engineering Practice, Vol. 21, No. 8, 2013,
pp. 1143–1156.

[68] S. Hung and S.N. Givigi, “A Q-Learning approach to flocking with UAVs in a stochastic
environment,” IEEE Transactions on Cybernetics, Vol. 47, No. 1, 2017, pp. 186–197.

[69] A.A. Peters and O. Mason, “Leader following with non-homogeneous weights for control
of vehicle formations,” 2016 IEEE Conference on Control Applications, September 2016.

[70] A.A. Peters, R.H. Middleton, and O. Mason, “Leader tracking in homogeneous vehicle
platoons with broadcast delays,” Automatica, Vol. 50, No. 1, 2014, pp. 64–74.

[71] Y. Liu, H. Gao, B. Xu, G. Liu, and H. Cheng, “Autonomous coordinated control of a
platoon of vehicles with multiple disturbances,” IET Control Theory and Applications,
Vol. 8, No. 18, 2014, pp. 2325–2335.

[72] J. Kwon and D. Chwa, “Adaptive bidirectional platoon control using a coupled sliding
mode control method,” IEEE Transactions on Intelligent Transportation Systems,
Vol. 15, No. 5, 2014, pp. 2040–2048.

[73] Y. Zheng, S.E. Li, K. Li, and L. Wang, “Stability Margin Improvement of Vehicular
Platoon Considering Undirected Topology and Asymmetric Control,” IEEE Transactions
on Control Systems Technology, Vol. 24, No. 4, 2016, pp. 1253–1265.

[74] X. Guo, J. Wang, F. Liao, and R.S.H. Teo, “Distributed Adaptive Integrated-Sliding-
Mode Controller Synthesis for String Stability of Vehicle Platoons,” IEEE Transactions
on Intelligent Transportation Systems, Vol. 17, No. 9, 2016, pp. 2419–2429.

[75] S. Sabau, C. Oara, S. Warnick, and A. Jadbabaie, “Optimal distributed control for
platooning via sparse Coprime factorizations,” IEEE Transactions on Automatic Control,
Vol. 62, No. 1, 2017, pp. 305–320.

[76] K. Ampountolas and M. Kring, “Mitigating bunching with bus-following models and
bus-to-bus cooperation,” IEEE 18th International Conference on Intelligent
Transportation Systems: Smart Mobility for Safety and Sustainability, September 2015.

[77] Q. Li and Z. Jiang, “Pattern preserving path following of unicycle teams with
communication delays,” Robotics and Autonomous Systems, Vol. 60, No. 9, 2012,
pp. 1149–1164.

106

[78] B. Hu and M.D. Lemmon, “Distributed Switching Control to Achieve Almost Sure
Safety for Leader–Follower Vehicular Networked Systems,” IEEE Transactions on
Automatic Control, Vol. 60, No. 12, 2015, pp. 3195–3209.

[79] X. Yu and L. Liu, “Distributed Formation Control of Nonholonomic Vehicles Subject to
Velocity Constraints,” IEEE Transactions on Industrial Electronics, Vol. 63, No. 2,
2016, pp. 1289–1298.

[80] G.C. Karras, K.J. Kyriakopoulos, and G.K. Karavas, “Towards cooperation of
underwater vehicles: A leader–follower scheme using vision-based implicit
communications,” IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2015, September 2015.

[81] E. Alpaydin, Introduction to Machine Learning, 3rd Edition, MIT Press, 2014.

[82] Atlanta Regional Commission, 2014 Transportation Fact Book, 2014.

[83] Cobb County Government, “Route 10,”
https://cobbcounty.org/index.php?option=com_content&view=article&id=4449:route-
10&catid=427&Itemid=2073. [Accessed July 24, 2017].

[84] H. Levinson, S. Zimmerman, J. Clinger, S. Rutherford et al., Bus Rapid Transit,
Transportation Research Board, Washington, D.C., 2003.

[85] Connect Cobb Northwest Transit Corridor Environmental Assessment, U.S. Department
of Transportation and Federal Transit Administration, April 2015.

[86] Connect 400 – GA 400 Transit Initiative Scoping Booklet – Environmental Impact
Statement, Federal Transit Administration (FTA) and Metropolitan Atlanta Rapid Transit
Authority (MARTA), April 2015.

[87] J.H. Thompson, “United States Census Bureau,” April 27, 2016,
file:///D:/Research/COBB%20DATA/Surveying%20U.S.%20Census%20Bureau%20Co
mmuting%20Data%20in%20Atlanta.html. [Accessed Feb. 5, 2018].

[88] M. Peak, C. Henke, and L. Wnuk, Bus Rapid Transit Ridership Analysis, U.S.
Department of Transportation, Federal Transit Administration, Washington, D.C., 2005.

[89] A.M. Lago, P.D. Mayworm, and J.M. McEnroe, “Ridership Response to Changes in
Transit Services,” Transportation Research Record, Vol. 818, pp. 13–19.

[90] R. Guensler, V. Elango, A. Guin, M. Hunter, et al., Atlanta I-85 HOV-to-HOT
Conversion: Analysis of Vehicle and Person Throughput, Georgia Department of
Transportation, Atlanta, 2013.

[91] M. Peak, Analysis of Fuels and Propulsion System Options for BRT Vehicles, Federal
Transit Administration, Washington D.C., 2004.

[92] A. Faiz, C.S. Weaver, and M.P. Walsh, Air Pollution from Motor Vehicles: Standards
and Technologies for Controlling Emissions, Washington: The World Bank, 1996.

[93] “Exhaust Emission Rates for Heavy-Duty On-road Vehicles in MOVES2014,” United
States Environmental Protection Agency, 2015.

[94] “Emission Factors for Greenhouse Gas Inventories,” United State Environmental
Protection Agency, 2014.

[95] O. Delgado and R. Muncrief, Assessment of Heavy-Duty Natural Gas Vehicle Emissions:
Implications and Policy Recommendations, The International Council on Clean
Transportation, Washington, D.C., 2015.

107

[96] “Conversion Factors for Hydrocarbon Emission Components,” United States
Environmental Protection Agency, 2005.

[97] K. Nosal and K. Solecka, “Application of AHP method for multi-criteria evaluation of
variants of the integration of urban public transport,” in 17th Meeting of the EURO
Working Group on Transportation, Sevilla, 2014.

[98] M.T. Tabucanon and H.-M. Lee, “Multiple Criteria Evaluation of Transportation System
Improvement Projects: The Case of Korea,” Journal of Advanced Transportation,
Vol. 29, No. 1, pp. 127–143.

[99] H. Sivilevicius and L. Maskeliunaite, “The Criteria for Identifying the Quality of
Passengers’ Transportation by Railway and Their Ranking Using AHP Method,”
Transport, Vol. 25, No. 4, 2011, pp. 368–381.

[100] K.L. Poh and B.W. Ang, “Transportation Fuels and Policy for Singapore: an AHP
Planning Approach,” Computers & Industrial Engineering, Vol. 37, 1999, pp. 507–525.

[101] M.P. Schlickmann, L.M. Martinez, and J. Pinho de Sousa, “A tool for supporting the
design of BRT and LRT services,” in 20th EURO Working Group on Transportation
Meeting, Budapest, Hungary, 2017.

[102] PTV AG, “Wiedemann 74 Model Parameters,” Vissim 5.40-01 User Manual, 2011,
p. 136.

[103] T. Sliupas, “Annual Average Daily Traffic Forecasting Using Different Techniques,”
Transport, Vol. 21, No. 1, 2006, pp. 38–43.

[104] Atlanta Braves Stadium and Mixed-Use Development – Transportation Analysis,
Kimley-Horn and Associates, Inc., May 2014.

[105] “MARTA Sustainability,” Metropolitan Atlanta Region Transit Authority,
http://www.itsmarta.com/marta-Sustainability.aspx. [Accessed April 6, 2018].

[106] “Connect Cobb: Northwest Transit Corridor Alternatives Analysis,” Georgia Department
of Transportation, Atlanta, 2012.

[107] T. McMahon, “Historical Consumer Price Index (CPI-U) Data,”
https://InflationData.com. [Accessed April 13, 2018].

[108] “Georgia Department of Transportation Fact Book,” Georgia Department of
Transportation, Atlanta, 2013.

[109] “Madison BRT Transit Corridor Study O&M Cost Estimates,” Madison Area
Transportation Planning Board,
http://www.madisonareampo.org/documents/LMadisonBRTOMCostEstimates.pdf.

[110] MARTA Annual Report, July 1, 2013 – June 30, 2014.

108

This page is intentionally left blank.

109

10 APPENDICES

111

10.1 Appendix A—Low-level Python Programs

10.1.1 Raspberry Pi Programs – Summary

The SMFe-Bus prototype is made up of a lead module and a follower module. The follower

module will be following/tracking the lead module without a physical connection and will rely on

camera image and laser scanner data processing performed by a laptop, which will then command

the follower module to make appropriate speed and steering adjustments. There are three Python

programs that need to run simultaneously when testing the prototype lead and follower modules to

demonstrate ‘virtual coupling and tracking’. The program operating the lead module is

“lead_mod_t9.py.” This program will only be processing incoming signals from a radio frequency

(RF) remote control and will not rely on data from the other programs. These incoming signals are

received into the program as pulse-width-modulated (PWM) signals generated by the RC receiver.

The program operating the follower module is “lmsc_v3_27.py” and will rely on commands

sent from the laptop to adjust the hub motor speeds and the steering of the follower module. Finally,

the last program that has to be running is “TCP_client_v1_24.py”. This program is run on the main

control laptop that will be physically situated on the follower module. The two programs that

operate the follower module (the laptop’s tracking program and the RPi’s lmsc_v3_27 program)

will be using the TCP_client_v1_24.py program for them to communicate according to the TCP/IP

protocol.

10.1.2 Lead_mod_t9.py

The lead module program (although this program is also run on the follower module for

maneuvering it from its parking spot in the lab to the test site under RC operator control) starts by

extending the brake actuator, which releases pressure on the brake system. The RF transmitter

provides functionality for the lead module to go forward, reverse, accelerate, brake, steer, and

engage the emergency brake. The direction to accelerate is checked by the program, immediately

112

followed by the status of the emergency brake. If the emergency brake is not engaged, the throttle

signal is checked and the voltage being sent to the motor controllers is varied correspondingly. The

program will next move to decipher the signal for the steering. Next, the brake signal will be

checked and applied if necessary. The program operates in a polling fashion, checking the signals

for the emergency brake, then the throttle, then the steering, and finally the brakes. An interrupt

can be applied at any time to engage the emergency brake and exit the program.

lead_mod_t9.py

#!/usr/bin/env python

import time
from time import sleep
import pigpio
import Adafruit_MCP4725
import sys
import read_PWM # This is an additional file. It
needs to be in the same folder as this file to run.
import RPi.GPIO as GPIO

PWM_GPIO =4 # LEFT-RIGHT CHANNEL 1 (RIGHT JOYSTICK)
PWM_GPIO4 = 6 # REVERSE #channel 4
EMERGENCY = 12 # Emergency Brake Output
REVERSE = 16
PWM_GPIO2 = 19 # CH5 switch
THROTTLE = 21 # Microswitch
PWM_GPIO3 = 22 # UP-DOWN CHANNEL 3 (LEFT JOYSTICK)
REVERSESIGN = 23

BRK1_GPIO = 18
BRK2_GPIO = 17
BRKHALL_GPIO = 20
STRACT1_GPIO = 25 # Steering H-Bridge signal 1
STRACT2_GPIO = 26 # Steering H-Bridge signal 2
STRHALL_GPIO = 27 # Hall sensor input from steering actuator

k=10 # Forward turning constant
kr=10 # Reverse turning constant
SAMPLE_TIME = 1 # Adjust higher to slow down "print" time to console for
debugging
x=1 # Used for countdown timer to shutdown program
i=1
var=1 # For infinite loop
c=3 # Shutdown timer length

 #PWM Values for throttle and steering

113

ThrCut = 1335 # Current throttle cut. Values
lower than this will stop the car.
ThrHigh = 1645 # Maximum throttle. Used to
determine when to engagne max throttle.

StrLeft = 1080 # PWM for maximum left
steering
StrMidL = 1475 # Values betwwen StrMidL and
Str Mid H are a straight line. This is a range since the PWM doesn't stay in one
place when centered.
StrCenter = 1480 # Used for calcation to
determine the steering. Should be between StrMidL and StrMidH
StrMidH = 1485 # Values betwwen StrMidL and
Str Mid H are a straight line. This is a range since the PWM doesn't stay in one
place when centered.
StrRight = 1935 # PWM for maximum right
steering

FWDPWM = 1350 # Reverse low value. Anything
lower than this will allow it to enter FWD
REVPWM = 1650
flag = False

EBakMid = 1200 # Since the ebrake is a switch
this value is the middle value to deteremine on/off.

BRKMIN = 1200 # Start value for Braking
Range
BRKHALL = 0
#BRKHALLSTR = BRKMIN # BRKHALL start value
#BRKSTR = 1300
BRKPOS = 0
#SV = False # Start value flag

STRHALL = 500 # Hall sensor count center =
500.
STRHALLD = 0 # Used for steering algorithm.
Steering Hall Delta is the differnce in the desired position and the current
position.
MAX = 575 # Steering right limit
MIN = 425 # Steering left limit

class reader:
 """
 A class to read PWM pulses and calculate their frequency
 and duty cycle. The frequency is how often the pulse
 happens per second. The duty cycle is the percentage of
 pulse high time per cycle.
 """
 def __init__(self, pi, gpio, weighting=0.00):
 """
 Instantiate with the Pi and gpio of the PWM signal
 to monitor.

 Optionally a weighting may be specified. This is a number
 between 0 and 1 and indicates how much the old reading
 affects the new reading. It defaults to 0 which means
 the old reading has no effect. This may be used to

114

 smooth the data.
 """
 self.pi = pi
 self.gpio = gpio

 if weighting < 0.0:
 weighting = 0.0
 elif weighting > 0.99:
 weighting = 0.99

 self._new = 1.0 - weighting # Weighting for new reading.
 self._old = weighting # Weighting for old reading.

 self._high_tick = None
 self._period = None
 self._high = None

 pi.set_mode(gpio, pigpio.INPUT)

 self._cb = pi.callback(gpio, pigpio.EITHER_EDGE, self._cbf)

 def _cbf(self, gpio, level, tick):

 if level == 1:

 if self._high_tick is not None:
 t = pigpio.tickDiff(self._high_tick, tick)

 if self._period is not None:
 self._period = (self._old * self._period) + (self._new * t)
 else:
 self._period = t

 self._high_tick = tick

 elif level == 0:

 if self._high_tick is not None:
 t = pigpio.tickDiff(self._high_tick, tick)

 if self._high is not None:
 self._high = (self._old * self._high) + (self._new * t)
 else:
 self._high = t

 def pulse_width(self):
 """
 Returns the PWM pulse width in microseconds.
 """
 if self._high is not None:
 return self._high
 else:
 return 0.0

 def cancel(self):

115

 """
 Cancels the reader and releases resources.
 """
 self._cb.cancel()

 # Above is for reading analog PWM signal

def STEERING(self):
 global STRHALL
 if GPIO.input(STRACT1_GPIO) == 1 and GPIO.input(STRACT2_GPIO) == 0:
 STRHALL = STRHALL - 1
 elif GPIO.input(STRACT1_GPIO) == 0 and GPIO.input(STRACT2_GPIO) == 1:
 STRHALL = STRHALL + 1

def BRAKING(self1): # function to determine
actuator position
 global BRKHALL
 if GPIO.input(BRK1_GPIO) == 1 and GPIO.input(BRK2_GPIO) == 0:
 BRKHALL = BRKHALL + 1 # increments hall sensor counter when
extending
 elif GPIO.input(BRK1_GPIO) == 0 and GPIO.input(BRK2_GPIO) == 1:
 BRKHALL = BRKHALL - 1 # decrements hall sensor counter when
contracting

GPIO.setmode(GPIO.BCM)
GPIO.setup(EMERGENCY,GPIO.OUT)
GPIO.output(EMERGENCY,GPIO.LOW)
GPIO.setup(REVERSE,GPIO.OUT)
GPIO.output(REVERSE,GPIO.LOW)
GPIO.setup(REVERSESIGN,GPIO.OUT)
GPIO.output(REVERSESIGN,GPIO.LOW)
GPIO.setup(THROTTLE,GPIO.OUT)
GPIO.setup(STRACT1_GPIO,GPIO.OUT)
GPIO.output(STRACT1_GPIO,GPIO.LOW)
GPIO.setup(STRACT2_GPIO,GPIO.OUT)
GPIO.output(STRACT2_GPIO,GPIO.LOW)
GPIO.setup(STRHALL_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(BRK1_GPIO, GPIO.OUT)
GPIO.setup(BRK2_GPIO, GPIO.OUT)
GPIO.setup(BRKHALL_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.add_event_detect(STRHALL_GPIO, GPIO.RISING, callback=STEERING, bouncetime=20)
GPIO.add_event_detect(BRKHALL_GPIO, GPIO.RISING, callback=BRAKING, bouncetime=20)
GPIO.output(REVERSESIGN,GPIO.LOW)

dac = Adafruit_MCP4725.MCP4725(address = 0x62, busnum= 1) # i2c address (address
= 0x62) Left motor
dac2 = Adafruit_MCP4725.MCP4725(address = 0x63,busnum= 1) # Right motor
dac3 = Adafruit_MCP4725.MCP4725(address = 0x60,busnum= 1) # Variable Regen
Braking
dac.set_voltage(0) # Start DAC's at 0V
and wait 3 seconds
dac2.set_voltage(0)
dac3.set_voltage(0)

if __name__ == "__main__":

 pi = pigpio.pi()
 p = read_PWM.reader(pi, PWM_GPIO) # Steering

116

 p2 = read_PWM.reader(pi, PWM_GPIO2) # E-Brake
 p3 = read_PWM.reader(pi, PWM_GPIO3) # Throttle
 p4 = read_PWM.reader(pi, PWM_GPIO4) # F/R Selection (Yaw
Channel)

 GPIO.output(BRK1_GPIO, GPIO.HIGH)
 GPIO.output(BRK2_GPIO, GPIO.LOW)
 print("Extending Actuator")
 time.sleep(10)
 GPIO.output(THROTTLE,GPIO.HIGH) # Starts in
forward
 GPIO.output(BRK1_GPIO, GPIO.LOW)
 GPIO.output(BRK2_GPIO, GPIO.LOW)
 BRKHALL = BRKMIN # Set Hall Counter at 1200

 try:
 while var == 1: # Infinte loop

 #time.sleep(SAMPLE_TIME)

 pw = p.pulse_width() # Steering
 pw2 = p2.pulse_width() # E-Brake
 pw3 = p3.pulse_width() # Throttle
 pw4 = p4.pulse_width() # Forward/Reverse
Selection

 if pw4 > REVPWM and pw3 <= BRKMIN: # Reverse selection
 flag = True
 GPIO.output(REVERSE,GPIO.HIGH)
 GPIO.output(REVERSESIGN,GPIO.HIGH)

 elif pw4 < FWDPWM and pw3 <= BRKMIN: # Forward selection
 flag = False
 GPIO.output(REVERSE,GPIO.LOW)

 if pw2 > EBakMid:
 GPIO.output(EMERGENCY,GPIO.HIGH) # E-Brake ON
 #GPIO.output(ABrake,GPIO.HIGH)
 print("The E-Brake is ON!")
 time.sleep(2)

 elif pw2 < EBakMid:
 GPIO.output(EMERGENCY,GPIO.LOW) # E-Brake OFF
 #GPIO.output(ABrake,GPIO.LOW)

 if pw2 <= EBakMid and pw3 > BRKMIN:
 if pw3 <= ThrCut and flag is False: # In
forward but stopped
 dac.set_voltage(0)
 dac2.set_voltage(0)
 #print("Forward stopped")
 elif pw3 >= ThrHigh and flag is False: # Full-speed
foward
 dac.set_voltage(2048)
 dac2.set_voltage(2048)
 #print("Forward full speed")
 elif pw3 > ThrCut and pw3 < ThrHigh and flag is False: # Forward
speed varies: 1925-1335=590 - These ranges have been tested and are incorrect.

117

 dacout = int((pw3 - ThrCut)*(3.471)) # 2048/590 =
3.47 which converts PWM to 12 bit
 dac.set_voltage(dacout)
 dac2.set_voltage(dacout)
 #print("Forward...")
 elif pw3 <= BRKMIN and flag is True: # In reverse
but stopped
 dac.set_voltage(0)
 dac2.set_voltage(0)
 #print("Reverse stopped")
 elif pw3 >= ThrHigh and flag is True:
 # Full-speed reverse which is mutliple of this
 dac.set_voltage(2048) # value
"1966"/4096 and motor controller max.
 dac2.set_voltage(2048)
 #print("Reversed full speed")
 elif pw3 > ThrCut and pw3 < ThrHigh and flag is True: # Reverse
speed varies: Same as FWD method
 dacout = int((pw3 - ThrCut)*(2.29)) #
1966/850=2.29
 dac.set_voltage(dacout)
 dac2.set_voltage(dacout)
 #print("Reverse...")

 R=(500+(StrCenter - pw)) # 500 is value random
counter value. Must match STRHALL start.
 STRHALLD = abs(STRHALL - R)
 if R > MAX:
 R = MAX
 elif R < MIN:
 R = MIN
 if STRHALLD < 5:
 GPIO.output(STRACT1_GPIO,GPIO.LOW) # H-Bridge inputs are
both set low since steering is in position
 GPIO.output(STRACT2_GPIO,GPIO.LOW)
 #print("STEERING IN POSITION")
 elif STRHALL < R or STRHALL < MIN:
 GPIO.output(STRACT1_GPIO,GPIO.LOW) # H-Bright is
move steering RIGHT
 GPIO.output(STRACT2_GPIO,GPIO.HIGH)
 #print("STEERING RIGHT")
 elif STRHALL > R or STRHALL > MAX:
 GPIO.output(STRACT1_GPIO,GPIO.HIGH) # H-Bridge is
moving steering LEFT
 GPIO.output(STRACT2_GPIO,GPIO.LOW)
 #print("STEERING LEFT")

 BRKPOS = BRKHALL - pw3 # BRKPOS compares
current position to desired position
 BRKTHR = BRKHALL # BRKTHR is the Max
Braking Limit
 if BRKTHR < 1175:
 BRKTHR = 1175
 if BRKPOS < 4 and BRKPOS > (-4):
 time.sleep(0.01)
 GPIO.output(BRK1_GPIO, GPIO.LOW) # Stopped when current
position and desired position are
 GPIO.output(BRK2_GPIO, GPIO.LOW) # in range of 4 and -4

118

 print("Not Moving")
 elif pw3 < BRKMIN:
 if BRKPOS >= 4 and BRKHALL >= BRKTHR:
 GPIO.output(BRK1_GPIO, GPIO.LOW) # Moving in
 GPIO.output(BRK2_GPIO, GPIO.HIGH)
 print("Moving In/In Breaking Zone")
 elif BRKPOS >= 4 and BRKHALL < BRKTHR: # Stopped (Max Brake
Position)
 GPIO.output(BRK1_GPIO, GPIO.LOW)
 GPIO.output(BRK2_GPIO, GPIO.LOW)
 elif BRKPOS <= (-4):
 GPIO.output(BRK1_GPIO, GPIO.HIGH) # Moving out, in
braking range
 GPIO.output(BRK2_GPIO, GPIO.LOW)
 print("Moving Out/In Breaking Zone")
 elif pw3 >= BRKMIN:
 GPIO.output(BRK1_GPIO, GPIO.HIGH) # Moving out, out of
braking range
 GPIO.output(BRK2_GPIO, GPIO.LOW)
 print("Moving Out/Applying Throttle")
 #elif pw3 >= BRKMIN and BRKHALL > BRKHALLSTR:
 # GPIO.output(BRK1_GPIO, GPIO.LOW) # Moving in, incase
actuator overshoots
 # GPIO.output(BRK2_GPIO, GPIO.HIGH)
 # print("Moving In/Applying Throttle")

 print("BRKHALL = {} ".format(BRKHALL))
 print("BRKPOS = {} ".format(BRKPOS))
 print("BRKHALLSTR = {} ".format(BRKHALLSTR))
 #print("Steeering ={} ".format(int(pw))) # Steering
 #print("E-Brake ={} ".format(int(pw2))) # E-Brake
 #print("Rev/Fwd ={} ".format(int(pw4))) # Rerse
 print("Throttle ={} ".format(pw3)) # UP DOWN
 #print("Steering Count(STRHALL) ={} ".format(STRHALL))
 #print("Steering Position(R) ={} ".format(R))
 #print("Steering PW = {} ".format(pw))
 #print("Steering HALLD = {} ".format(STRHALLD))

 except KeyboardInterrupt:
 dac.set_voltage(0)
 dac2.set_voltage(0)
 GPIO.output(EMERGENCY,GPIO.HIGH)
 GPIO.output(STRACT1_GPIO,GPIO.LOW)
 GPIO.output(STRACT2_GPIO,GPIO.LOW)
 while (x < c):
 print("PiBus is stopping in, {} seconds".format(c - x))
 x = x + 1
 sleep(1)
 GPIO.cleanup()
 sys.exit()

 p.cancel()
 pi.stop()

119

10.1.3 lmsc_v3_27.py

Similar to the lead module program, the follower module program starts by extending the

brake actuator, which releases pressure on the brake system. The very next operation of the program

is to check the signal of the emergency brake button. An RF remote, similar to the RF remote of

the lead module, will send a signal to the follower program if the designated switch on the remote

is activated. It is the only function of the follower module RF remote. All other instruction will

come directly from the laptop. If the emergency brake is engaged, a series of events will ensue on

the follower module. First, the electric brake system will activate via a designated GPIO pin. Then,

the physical brake system actuator will start to retract, applying pressure to the brakes. The values

for the speed of the two motors will be sent to the laptop during this process. Once this process has

finished and the follower module has stopped, the brake system will be disengaged and the

emergency brake will be switched off, as long as the actual RF remote switch has been turned off.

As long as the emergency brake switch is not activated, the program will simply wait for the

TCP client to connect. When it does connect, the follower module will wait for commands from

the “TCP_client_v1_24.py” program on the laptop. Currently, the “TCP_client_v1_24.py”

program being run to test the follower module only provides a final speed for the follower module

to accelerate to until the user cancels the program. This acceleration is optimized by a proportional–

integral–derivative (PID) controller class. The program operates in a polling fashion constantly

checking the emergency brake signal and then receiving data from the laptop. An interrupt can be

applied at any time to engage the emergency brake and exit the program.

lmsc_v3_27.py

#!/usr/bin/env python

import time
from time import sleep
from datetime import datetime
import pigpio
import Adafruit_MCP4725

120

import Adafruit_ADS1x15
import sys
import socket
import RPi.GPIO as GPIO
import logging
import threading
import struct
import random
import math

RESERVED FOR PWM READER

class reader:
 """
 A class to read PWM pulses and calculate their frequency
 and duty cycle. The frequency is how often the pulse
 happens per second. The duty cycle is the percentage of
 pulse high time per cycle.
 """
 def __init__(self, pi, gpio, weighting=0.00):
 """
 Instantiate with the Pi and gpio of the PWM signal
 to monitor.

 Optionally a weighting may be specified. This is a number
 between 0 and 1 and indicates how much the old reading
 affects the new reading. It defaults to 0 which means
 the old reading has no effect. This may be used to
 smooth the data.
 """
 self.pi = pi
 self.gpio = gpio

 if weighting < 0.0:
 weighting = 0.0
 elif weighting > 0.99:
 weighting = 0.99

 self._new = 1.0 - weighting # Weighting for new reading.
 self._old = weighting # Weighting for old reading.

 self._high_tick = None
 self._period = None
 self._high = None

 pi.set_mode(gpio, pigpio.INPUT)

 self._cb = pi.callback(gpio, pigpio.EITHER_EDGE, self._cbf)

 def _cbf(self, gpio, level, tick):

 if level == 1:

 if self._high_tick is not None:

121

 t = pigpio.tickDiff(self._high_tick, tick)

 if self._period is not None:
 self._period = (self._old * self._period) + (self._new * t)
 else:
 self._period = t

 self._high_tick = tick

 elif level == 0:

 if self._high_tick is not None:
 t = pigpio.tickDiff(self._high_tick, tick)

 if self._high is not None:
 self._high = (self._old * self._high) + (self._new * t)
 else:
 self._high = t

 def pulse_width(self):
 """
 Returns the PWM pulse width in microseconds.
 """
 if self._high is not None:
 return self._high
 else:
 return 0.0

 def cancel(self):
 """
 Cancels the reader and releases resources.
 """
 self._cb.cancel()

 # Above is for reading analog PWM signal

RESERVED FOR MODIFIED PWM READER CLASS

class PwmReader(reader):

 def __int__(self, pi, gpio, weighting=0.00):

 reader.__init__(self, pi, gpio, weighting=0.00)

 self.gpio = gpio

 def refresh(self):

 self._high_tick = None
 self._period = None
 self._high = None
 self._cb.cancel()

122

 self._cb = self.pi.callback(self.gpio, pigpio.EITHER_EDGE, self._cbf)

RESERVED FOR Hall Sensor Handler Class

class HsensorHandler:

 def __init__(self, pi, gpio_lft, gpio_rht):

 self.pi = pi
 self.gpio_lft = gpio_lft # PWM GPIO (Left -> 13)
 self.gpio_rht = gpio_rht # PWM GPIO (Right -> 23)

 # trig hall sensor reader
 self.pl = PwmReader(self.pi, self.gpio_lft)
 self.pr = PwmReader(self.pi, self.gpio_rht)

 def close(self):

 self.pl.cancel()
 self.pr.cancel()
 print("PWM readers stopped.")
 time.sleep(1)

RESERVED FOR SPEED CONTROLLER CLASS

class SpdCtrl(HsensorHandler):

 def __init__(self, pi, gpio_lft, gpio_rht, dac_lft, dac_rht):

 HsensorHandler.__init__(self, pi, gpio_lft, gpio_rht)

 # PID Parameters
 self.Kpwm = 48.0/4096.0
 self.Kp = 0.840 # Initial Kp value is 0.840 (0, 1.8, 0.002)
 self.Ki = 2.02 # Initial Ki value is 2.02 (0, 3.2, 0.002)
 self.Kd = 0.008 # Initial Kd value is 0.008 (0, 0.2, 0.0002)

 # PID Parameters (Left)
 self.op_lft = 0.0 # controller output
 self.sp_lft = 0.0 # Set Point
 self.pv_lft = 0.0 # process variable
 self.e_lft = 0.0 # error
 self.ie_lft = 0.0 # integral of the error
 self.dpv_lft = 0.0 # derivative of the pv
 self.P_lft = 0.0 # proportional
 self.I_lft = 0.0 # integral
 self.D_lft = 0.0 # derivative
 self.sp_lft = 0.0 # set point

 self.pv_p_lft = 0.0 # previous value of pv

123

 self.ie_p_lft = 0.0 # previous value of ie

 # PID Parameters (Right)
 self.op_rht = 0.0 # controller output
 self.sp_rht = 0.0 # Set Point
 self.pv_rht = 0.0 # process variable
 self.e_rht = 0.0 # error
 self.ie_rht = 0.0 # integral of the error
 self.dpv_rht = 0.0 # derivative of the pv
 self.P_rht = 0.0 # proportional
 self.I_rht = 0.0 # integral
 self.D_rht = 0.0 # derivative
 self.sp_rht = 0.0 # set point

 self.pv_p_rht = 0.0 # previous value of pv
 self.ie_p_rht = 0.0 # previous value of ie

 # Upper and Lower limits on OP
 self.op_hi = 409.6
 self.op_lo = 0

 # PID Sample Time
 self.pid_smp_tm = 0.001 # 1ms

 # PID loop flags
 self.first_pid_lp = True

 # Initialize DAC
 self.dac = dac_lft
 self.dac2 = dac_rht

 def get_pid_parameters(self):

 pid_para = [self.Kp, self.Ki, self.Kd]
 return pid_para

 def read_left_motor_speed(self):

 return self.pv_lft

 def read_right_motor_speed(self):

 return self.pv_rht

 def write_left_motor_speed(self, pv_lft):

 self.pv_lft = pv_lft

 def write_right_motor_speed(self, pv_rht):

 self.pv_rht = pv_rht

 def refresh_left_pwm_reader(self):

 self.pl.refresh()

 def refresh_right_pwm_reader(self):

124

 self.pr.refresh()

 # define DAC outputer (motor controller input)
 def dac_handler(self, amature_voltage_lft, amature_voltage_rht):

 # amature_voltage
 Va_lft = amature_voltage_lft
 Va_rht = amature_voltage_rht

 if Va_lft > 4.8:
 dacout = 4096
 elif Va_lft > 0 and Va_lft <= 4.8:
 dacout = (4096/4.8)*Va_lft
 elif Va_lft <= 0:
 dacout = 0
 else:
 dacout = 0

 if Va_rht > 4.8:
 dac2out = 4096
 elif Va_rht > 0 and Va_rht <= 4.8:
 dac2out = (4096/4.8)*Va_rht
 elif Va_rht <= 0:
 dac2out = 0
 else:
 dac2out = 0

 self.dac.set_voltage(int(dacout))
 self.dac2.set_voltage(int(dac2out))

 # PID Control Algorithm
 def pid_control(self, set_point):

 # PID Contorl

 delta_t = self.pid_smp_tm
 self.sp_lft = set_point[0]
 self.sp_rht = set_point[1]

 pw_lft = self.pl.pulse_width() # in us
 pw_rht = self.pr.pulse_width()

 # print("pw_lft = %f\tpw_rht = %f" % (pw_lft, pw_rht))

 if pw_lft > 0:
 freq_lft = 1 / ((pw_lft / 100000.0) * 2) # in Hz
 else:
 freq_lft = 0.0

 if pw_rht > 0:
 freq_rht = 1 / ((pw_rht / 100000.0) * 2) # in Hz
 else:
 freq_rht = 0.0

 rpm_lft = 15.0 * freq_lft
 rpm_rht = 15.0 * freq_rht
 self.pv_lft = rpm_lft
 self.pv_rht = rpm_rht

125

 self.e_lft = self.sp_lft - self.pv_lft
 self.e_rht = self.sp_rht - self.pv_rht

 # print("e_lft = %f\te_rht = %f" % (self.e_lft, self.e_rht))

 # calculate starting on second cycle
 if self.first_pid_lp == False:

 self.dpv_lft = -(self.pv_lft - self.pv_p_lft)/delta_t
 self.dpv_rht = -(self.pv_rht - self.pv_p_rht)/delta_t

 self.ie_lft = self.ie_p_lft + self.e_lft * delta_t
 self.ie_rht = self.ie_p_rht + self.e_rht * delta_t

 else:
 self.first_pid_lp = False

 self.P_lft = self.Kp * self.e_lft
 self.P_rht = self.Kp * self.e_rht

 self.I_lft = self.Ki * self.ie_lft
 self.I_rht = self.Ki * self.ie_rht

 self.D_lft = self.Kd * self.dpv_lft
 self.D_rht = self.Kd * self.dpv_rht

 self.op_lft = self.P_lft + self.I_lft + self.D_lft
 self.op_rht = self.P_rht + self.I_rht + self.D_rht

 # print("op = %f = %f + %f + %f" %(self.op, self.P, self.I, self.D))

 if self.op_lft > self.op_hi: # check upper limit
 self.op_lft = self.op_hi
 self.ie_lft = self.ie_lft - self.e_lft * delta_t # anti-reset windup
 if self.op_lft < self.op_lo: # check lower limit
 self.op_lft = self.op_lo
 self.ie_lft = self.ie_lft - self.e_lft * delta_t # anti-reset windup

 if self.op_rht > self.op_hi: # check upper limit
 self.op_rht = self.op_hi
 self.ie_rht = self.ie_rht - self.e_rht * delta_t # anti-reset windup
 if self.op_rht < self.op_lo: # check lower limit
 self.op_rht = self.op_lo
 self.ie_rht = self.ie_rht - self.e_rht * delta_t # anti-reset windup

 # calculate amature voltage which relates to the PID output
 Va_lft = self.op_lft * self.Kpwm
 Va_rht = self.op_rht * self.Kpwm

 # send the Va to a DAC so that it generates an output to the motor
controller
 self.dac_handler(Va_lft, Va_rht)

 self.ie_p_lft = self.ie_lft
 self.ie_p_rht = self.ie_rht

 self.pv_p_lft = self.pv_lft

126

 self.pv_p_rht = self.pv_rht

 # clean up
 def close(self):

 HsensorHandler.close(self)
 self.dac.set_voltage(0)
 self.dac2.set_voltage(0)
 print("\nDACs are cleaned up.\n")
 time.sleep(1)

RESERVED FOR TCP-IP CLASS

class Tcpip:

 def __init__(self, ip, port):

 # Data
 self.request = ''
 self.request_p = ''
 self.ask = ''

 self.x = [0.0, 0.0, 0.0] # Added Array value location 2

 self.TCP_SERVER_PAUSE = 0.5
 self.TCP_SERVER_TRANS_PAUSE = 0.004

 self.first_receive = False

 # define host ip: Rpi's IP
 self.HOST_IP = ip
 self.HOST_PORT = port
 print("Starting socket: TCP...")
 time.sleep(self.TCP_SERVER_PAUSE)

 # create socket object:socket=socket.socket(family,type)
 self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 # self.server.setsockopt(socket.SOL_SOCKET,socket.SO_RCVTIMEO,
struct.pack('LL',0.005,0))
 host_addr = (self.HOST_IP, self.HOST_PORT)
 print("TCP server created @ %s:%d!" %(self.HOST_IP, self.HOST_PORT))
 time.sleep(self.TCP_SERVER_PAUSE)

 # bind socket to addr:socket.bind(address)
 self.server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
 self.server.bind(host_addr)
 print('Socket bind complete.')
 time.sleep(self.TCP_SERVER_PAUSE)

 # listen connection request:socket.listen(backlog)
 self.server.listen(5)
 print('Socket now listening...\n')
 time.sleep(self.TCP_SERVER_PAUSE)

127

 # waiting for connection in main loop
 while True:
 print("Connecting to the client...")
 time.sleep(self.TCP_SERVER_PAUSE)
 (self.client), (client_ip, client_port) = (self.server).accept()
 print("Connection accepted from %s:%s.\n" %(client_ip, client_port))
 time.sleep(self.TCP_SERVER_PAUSE)
 self.time_0 = datetime.utcnow()
 break

 def data_trans(self, runtime, spd_ctrl_status, str_ctrl_status):

 act_spd = [spd_ctrl_status[0], spd_ctrl_status[1]] # actual motor speed
in the sequence of left, right
 des_spd = spd_ctrl_status[2]
 pid_para = [spd_ctrl_status[3], spd_ctrl_status[4], spd_ctrl_status[5]]
 cur_loc = str_ctrl_status[0]
 cur_ang = str_ctrl_status[1]
 des_loc = str_ctrl_status[2]
 des_ang = str_ctrl_status[3]
 idx_end = 0 # looking up index for '#' (ending) from the received
string
 idx_com = 0 # looking up index for ',' (comma) from the received
string
 idx_star = 0 # looking up index for '*' (star) from the received string

 # req = '' # temporary variable for self.request
 # i = 0 # loop counter
 # 0 - ask = 'S', indicating the server has received the set point speed
values
 # 1 - Non-legal receiving (could either be not including '#' or not
receiving anything)
 # 2 - ask = speeds (at first check if server receive 'Q#')
 # 3 - ask = 'S', indicating the server has received the desired steering
location value
 flag = 0

 # receive & send
 for i in range(1):

 delta_time = (datetime.utcnow() - self.time_0)
 tm = delta_time.seconds + delta_time.microseconds*1.0e-6
 if tm > 10:
 return -1

 self.client.setblocking(0)
 try:
 self.request = self.client.recv(64)
 self.client.setblocking(1)
 except Exception:
 flag = 1
 break
 # Check if the string includes ending symbol '#'
 if self.request.count('#'):
 idx_end = self.request.index('#')
 # flag = 0
 else:
 self.request = ''

128

 flag = 1
 break
 # Check if the string includes ',' which means set points are received
 if self.request.count(','):
 idx_com = self.request.index(',')
 flag = 0
 elif self.request.count('*'):
 idx_star = self.request.index('*') # Added
 flag = 3
 else:
 flag = 2
 break

 if flag == 0:
 req = self.request[:idx_end]
 try:
 self.x[0] = float(req[:idx_com])
 self.x[1] = float(req[idx_com+1:])
 self.ask = 'S'
 except Exception:
 self.x[0] = 0.0
 self.x[1] = 0.0
 self.x[2] = 1100
 self.ask = ''
 # print("Server Error: Receiving wrong values!")
 try:
 self.client.send(str(self.ask))
 except Exception:
 self.ask = ''
 # print("Server Error: Sending 'S' in error!")

 elif flag == 3:
 req = self.request[:idx_end]
 try:
 self.x[2] = float(req[idx_star+1:])
 self.ask = 'S'
 except Exception:
 self.x[2] = 0.0
 self.ask = ''
 try:
 self.client.send(str(self.ask))
 except Exception:
 self.ask = ''

 elif flag == 1:
 self.request = ''
 self.ask = ''
 elif flag == 2:
 req = self.request[:idx_end]

 try:
 # Check if the string includes 'Q', which means actual speeds are
requested
 if req == 'QA':
 self.ask = str(cur_ang)
 self.client.send(str(self.ask))
 elif req == 'QS':
 self.ask = str(act_spd[0]) + ',' + str(act_spd[1])

129

 self.client.send(str(self.ask))
 elif req.count('Q'):
 self.ask = str(runtime) + ',' + str(act_spd[0]) + ',' +
str(act_spd[1]) + ',' + \
 str(des_spd) + '*' + str(cur_loc) + '*' +
str(cur_ang) + '*' + \
 str(des_loc) + '*' + str(des_ang)
 self.client.send(str(self.ask))
 # Check if the string includes 'Q', which means pid parameters are
requested
 elif req.count('D'):
 self.ask = str(pid_para[0]) + ',' + str(pid_para[1]) + ',' +
str(pid_para[2])
 self.client.send(str(self.ask))
 # If received 'P', exit
 elif req.count('P'):
 self.ask = ''
 return 1
 # Check the first time that receives the heart pack
 elif req.count('H'):
 self.first_receive = True
 self.ask = 'K'
 self.time_0 = datetime.utcnow()
 self.client.send(str(self.ask))
 except Exception:
 pass

 return 1 # Tcpip Works normally

 def get_request(self):

 return self.request

 def get_ask(self):

 return self.ask

 def get_set_point(self):

 return self.x

 def close(self):

 self.client.close()
 self.server.close()
 print("TCP-IP closed.\n")
 time.sleep(1) #Added sections

This class basically fixes the pwm reading problem

class NewSpdCtrl(SpdCtrl):

 def __init__(self, pi, gpio_lft, gpio_rht, dac_lft, dac_rht):

130

 SpdCtrl.__init__(self, pi, gpio_lft, gpio_rht, dac_lft, dac_rht)

 # Variables
 self.spd_check_pt = [0.0, 0.0] # Left and right
 self.spd_check_pt_p = [0.0, 0.0] # _p means previous
 self.tm_check_pt = [0.0, 0.0]
 self.tm_check_pt_p = [0.0, 0.0] # _p means previous
 self.tm_repeat = [0.0, 0.0]
 self.turns = [0, 0] # 0 for previous, 1 for recent

 # Flags
 self.counting_end = True # if true, stop counting repeat time
 self.first_pwm_adjustment_loop = True

 def refresh_speed_controller(self, set_point, recent_speed):

 # PID Parameters
 self.Kpwm = 48.0 / 4096.0
 self.Kp = 0.840 # Initial Kp value is 0.840 (0, 1.8, 0.002)
 self.Ki = 2.02 # Initial Ki value is 2.02 (0, 3.2, 0.002)
 self.Kd = 0.008 # Initial Kd value is 0.008 (0, 0.2, 0.0002)

 # PID Parameters (Left)
 # self.op_lft = 0.0 # controller output
 self.sp_lft = set_point[0] # Set Point

 self.pv_lft = recent_speed[0] # process variable

 self.e_lft = 0.0 # error
 self.ie_lft = 0.0 # integral of the error
 self.dpv_lft = 0.0 # derivative of the pv
 self.P_lft = 0.0 # proportional
 self.I_lft = 0.0 # integral
 self.D_lft = 0.0 # derivative
 self.sp_lft = 0.0 # set point

 self.pv_p_lft = recent_speed[0] # previous value of pv
 self.ie_p_lft = 0.0 # previous value of ie

 # PID Parameters (Right)
 # self.op_rht = 0.0 # controller output
 self.sp_rht = set_point[1] # Set Point

 self.pv_rht = recent_speed[1] # process variable

 self.e_rht = 0.0 # error
 self.ie_rht = 0.0 # integral of the error
 self.dpv_rht = 0.0 # derivative of the pv
 self.P_rht = 0.0 # proportional
 self.I_rht = 0.0 # integral
 self.D_rht = 0.0 # derivative
 self.sp_rht = 0.0 # set point

 self.pv_p_rht = recent_speed[1] # previous value of pv
 self.ie_p_rht = 0.0 # previous value of ie

 # Upper and Lower limits on OP
 self.op_hi = 409.6

131

 self.op_lo = 0

 # PID Sample Time
 self.pid_smp_tm = 0.001 # 1ms

 # PID loop flags
 self.first_pid_lp = True

 # Initialize DAC
 # self.dac.set_voltage(0)
 # self.dac2.set_voltage(0)

 # NewSpdCtrl variables
 self.spd_check_pt = [0.0, 0.0] # Left and right
 self.spd_check_pt_p = [0.0, 0.0] # _p means previous
 self.tm_check_pt = [0.0, 0.0]
 self.tm_check_pt_p = [0.0, 0.0] # _p means previous
 self.tm_repeat = [0.0, 0.0]
 self.turns = [0, 0] # 0 for previous, 1 for recent

 # NewSpdCtrl flags
 self.counting_end = True # if true, stop counting repeat time
 self.first_pwm_adjustment_loop = True

 def fix_pwm_reading(self, sp, speed, tm, lft_or_rht):

 if self.turns[lft_or_rht] == 0:
 self.tm_check_pt_p[lft_or_rht] = tm
 self.spd_check_pt_p[lft_or_rht] = speed
 self.turns[lft_or_rht] = 1
 else:
 self.tm_check_pt[lft_or_rht] = tm
 self.spd_check_pt[lft_or_rht] = speed
 self.turns[lft_or_rht] = 0

 if self.first_pwm_adjustment_loop:
 self.first_pwm_adjustment_loop = False
 self.counting_end = True
 else:
 for i in range(1):
 if self.spd_check_pt[lft_or_rht] !=
self.spd_check_pt_p[lft_or_rht]:
 self.counting_end = True
 else:
 tm_r = self.tm_check_pt[lft_or_rht]
 tm_p = self.tm_check_pt_p[lft_or_rht]
 self.tm_repeat[lft_or_rht] = self.tm_repeat[lft_or_rht] +
abs(tm_r - tm_p)
 if self.spd_check_pt[lft_or_rht] == 0:
 self.counting_end = True
 break

 self.counting_end = False

 # if self.tm_repeat[lft_or_rht] > 0.5 * (1 /
(self.spd_check_pt[lft_or_rht] / 60.0)):
 if self.tm_repeat[lft_or_rht] > 0.35:
 #if sp >= 30: # Check if spd command less than 20 RPM

132

 # self.counting_end = True
 #else:
 self.counting_end = True

 self.refresh_left_pwm_reader()
 self.refresh_right_pwm_reader()
 self.refresh_speed_controller([0, 0], [0, 0])

 if self.counting_end:
 self.tm_repeat[lft_or_rht] = 0

This class integrates my motor speed control part
to Corey's steering control code

class Integrate:

 def __init__(self, _pi):

 # GPIOs
 self.THROTTLE = 21 # Microswitch
 self.EMERGENCY = 12 # Emergency Brake Output
 self.REVERSE = 16
 self.PWM_GPIO2 = 19 # CH5 switch
 self.PWM_GPIO3 = 22 # UP-DOWN CHANNEL 3 (LEFT JOYSTICK)
 self.REVERSESIGN = 23 # Needs to be changed because it'll be used for
speed control
 self.BRK1_GPIO = 18
 self.BRK2_GPIO = 17
 self.BRKHALL_GPIO = 20
 self.STRACT1_GPIO = 25 # Steering H-Bridge signal 1
 self.STRACT2_GPIO = 26 # Steering H-Bridge signal 2

 self.SPDCONTROL_LFT = 13 # PWM GPIO for speed control (Right: 23; Left:
13)
 self.SPDCONTROL_RHT = 23 # PWM GPIO for speed control (Right: 23; Left:
13)
 self.ABrake = 20 # Testing brake mod

 # Logging and Debugging
 logging.basicConfig(filename='/mnt/bus/logs/log.txt', level=logging.INFO)

 # Import ADC for Steering Slide Pot
 self.adc = Adafruit_ADS1x15.ADS1015()

 # Variables and Constants
 self.k = 10 # Forward turning constant
 self.kr = 10 # Reverse turning constant
 self.SAMPLE_TIME = 0.01 # Adjust higher to slow down "print" time to
console for debugging
 self.x = 0 # Used for countdown timer to shutdown program
 self.var = 1 # For infinite loop
 self.c = 3 # Shutdown timer length
 self.DS = [0.0, 0.0] # motor speed set points
 self.DS_p = [0.0, 0.0] # Previous motor speed set points

133

 self.tm = 0.0 # Timer
 self.tm_0 = None # timer beginning stamp
 self.tm_p = 0.0 # Previous time
 self.dt = None # time period
 self.tm_1 = None # timer ending stamp
 self.i = 0 # Loop counter
 self.clt_st = 0 # Client Status

 # Flags
 self.time_stamp = False
 self.first_sp_cpr = True # the first comparison about set point speeds

 # Variables and constants for fixing pwm reading problem
 self.lft_spd = [0.0, 0.0] # left speed check point for zero speed command
([0] is previous, [1] is now)
 self.rht_spd = [0.0, 0.0]
 self.lft_timeout_check = [0.0, 0.0] # left motor time check point for
zero speed command timeout
 self.rht_timeout_check = [0.0, 0.0]
 self.lft_tm_repeat = 0.0 # left motor time period that the speeds have
become the same
 self.rht_tm_repeat = 0.0

 # Flags for fixing pwm reading program
 self.spd_check = 0 # Reference for previous or recent speed, relating to
sft_spd and rht_spd

 # PWM values
 self.EBakMid = 1200 # Since the ebrake is a switch this value is the
middle value to deteremine on/off.

 self.BRKMIN = 1330
 self.BRKHALL = 0
 self.BRKHALLSTR = self.BRKMIN # BRKHALL start value
 self.BRKSTR = 1300
 self.BRKPOS = 0

 self.BrkReset = 160
 self.Brkhall = 160
 self.BrkStop = 0

 # Flag for triggering E-Break
 self.e_break_on = False

 # steering constants for angle-bits conversion
 self.A1 = 135606
 self.A2 = 55800
 self.B = 411.72
 self.K = -0.0621
 self.Theta0 = 73.0

 # steering variables
 self.GAIN = 1
 self.d = 0 # Used as a distance from current to desired
 self.dv = 0 # Distance direction
 self.dpast = 0
 self.PWM = 0
 self.DA = 0 # desired angle

134

 self.DL = self.__angle_to_bits(self.DA) # Desired location
 self.PPWM = 0 # Past PWM used for optimization by not having to setting
same PWM value every loop
 self.looping = True
 self.MAX = 1550
 self.MIN = 350
 self.BOOSTCOUNTER = 100
 self.PWMBOOST = 130 # Used to get stuck actuator moving BUT IS ALSO
MINIMUM USABLE PWM

 # TCP Socket ip and port
 self.ip = "192.168.1.2"
 self.port = 4869

 # PI
 self.pi = _pi

 # DAC config
 self.dac = Adafruit_MCP4725.MCP4725(address=0x62, busnum=1) # i2c address
(address = 0x62) left motor
 self.dac2 = Adafruit_MCP4725.MCP4725(address=0x63, busnum=1) # right
motor
 self.dac3 = Adafruit_MCP4725.MCP4725(address=0x60, busnum=1) # Variable
Regen Braking

 # PWM Readers
 self.p2 = reader(self.pi, self.PWM_GPIO2) # E-Brake
 # p3 = reader(pi, PWM_GPIO3) # Throttle

 # GPIO initialize
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(self.EMERGENCY, GPIO.OUT)
 GPIO.output(self.EMERGENCY, GPIO.LOW)
 GPIO.setup(self.REVERSE, GPIO.OUT)
 GPIO.output(self.REVERSE, GPIO.LOW)
 GPIO.setup(self.REVERSESIGN, GPIO.OUT)
 GPIO.output(self.REVERSESIGN, GPIO.LOW)
 GPIO.setup(self.THROTTLE, GPIO.OUT)
 GPIO.setup(self.ABrake, GPIO.OUT)
 GPIO.output(self.ABrake, GPIO.LOW)

 GPIO.setup(self.BRK1_GPIO, GPIO.OUT)
 GPIO.setup(self.BRK2_GPIO, GPIO.OUT)

 GPIO.setup(self.STRACT1_GPIO, GPIO.OUT) # Sets up pin 25
 GPIO.output(self.STRACT1_GPIO, GPIO.LOW) # Sets pin 25 to LOW
 GPIO.setup(self.STRACT2_GPIO, GPIO.OUT) # Sets up pin 26
 GPIO.output(self.STRACT2_GPIO, GPIO.LOW) # Sets pin 26 to LOW

 # DAC initialize
 self.dac.set_voltage(0) # Start DAC's at 0V and wait 3 seconds
 self.dac2.set_voltage(0)
 self.dac3.set_voltage(0)
 GPIO.output(self.REVERSESIGN, GPIO.LOW)
 sleep(2)

 # Add TRIM center code.

135

 GPIO.output(self.THROTTLE, GPIO.HIGH) # Starts in forward
 GPIO.output(self.REVERSE, GPIO.LOW)

 # steering initialize
 self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, 0)
 self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, 0)
 self.adc.start_adc(0, gain=self.GAIN)
 self.CurrentLocation = self.adc.get_last_result()
 self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation)
 print("Steering location starting at {}".format(self.CurrentLocation))
 print("Front wheel angle starting at {}".format(self.CurrentAngle))
 logging.info("PROGRAM RESTARTED! Starting Location =
{}".format(self.CurrentLocation))

 # thread list
 self.threads = []
 self.thread_steering_controller = None
 self.thread_motor_speed_controller = None
 self.thread_tcp_communication = None

 # flag for stopping all threads
 self.stop_all_threads = False

 # others
 self.tcp = None
 self.spd = None
 self.pid_para = None

 def init_controller(self):

 GPIO.output(self.BRK1_GPIO, GPIO.HIGH)
 GPIO.output(self.BRK2_GPIO, GPIO.LOW)
 print("Extending Actuator")
 time.sleep(3)
 GPIO.output(self.BRK1_GPIO, GPIO.LOW)
 GPIO.output(self.BRK2_GPIO, GPIO.LOW)

 print("Centralizing steering actuator")
 self.__steering_control_unit()
 self.CurrentLocation = self.adc.get_last_result()
 self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation)
 print("Now steering location is at {}".format(self.CurrentLocation))
 print("Now well angle is at {}".format(self.CurrentAngle))

 self.tcp = Tcpip(self.ip, self.port)
 self.spd = NewSpdCtrl(self.pi, self.SPDCONTROL_LFT, self.SPDCONTROL_RHT,
self.dac, self.dac2)
 self.pid_para = self.spd.get_pid_parameters()
 print("\n")
 print('Kp = {}'.format(self.pid_para[0]))
 print('Ki = {}'.format(self.pid_para[1]))
 print('Kd = {}'.format(self.pid_para[2]))

 def start_timer(self):

 self.tm = 0
 self.tm_0 = datetime.utcnow()

136

 def __steering_control_unit(self):

 self.CurrentLocation = self.adc.get_last_result()
 self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation)
 # self.DL = self.set_point[2]
 # print("DL={}".format(self.DL))
 self.looping = True
 self.PWMBOOST = 130 # This reset the PWMBOOST value everytime so they our
minimums stay consistent
 # print("Currently at {}".format(self.CurrentLocation))
 logging.info("Starting Location = {}".format(self.CurrentLocation))
 if self.DL > self.MAX:
 self.DL = self.MAX
 # print("Maximum = {}".format(self.MAX))
 if self.DL < self.MIN:
 self.DL = self.MIN
 # print("Minimum = {}".format(self.MIN))
 logging.info("Desired Location = {}".format(self.DL))

 while self.looping == True:

 try:
 self.CurrentLocation = self.adc.get_last_result()
 self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation)
 except Exception:
 pass
 self.dv = (self.CurrentLocation - self.DL)
 self.d = abs(self.dv)
 if self.d > 150:
 self.PWM = 250
 if 150 > self.d > 50:
 self.PWM = int((6 / 5) * self.d + 70)
 if self.d < 50:
 self.PWM = self.PWMBOOST
 if abs(self.d - self.dpast) < 5:
 self.BOOSTCOUNTER = self.BOOSTCOUNTER - 1
 if self.BOOSTCOUNTER == 0:
 self.PWMBOOST = self.PWMBOOST + 5
 self.BOOSTCOUNTER = 100
 # print("Rasing PWM since actuator isn't moving!")
 if self.PWM != self.PPWM:
 if self.dv < 0:
 self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, self.PWM)
 self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, 0)
 if self.dv > 0:
 self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, self.PWM)
 self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, 0)
 self.PPWM = self.PWM
 if self.d < 1:
 self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, 0)
 self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, 0)
 self.looping = False
 self.dpast = self.d
 # print("d={}".format(self.d))
 # print("Ending at {}".format(self.CurrentLocation))
 logging.info("Ending Location = {}".format(self.CurrentLocation))

 def steering_control(self):

137

 # Y = -.0621x+421.72
 # Min = 400bits = 15 5/8in * 25.4 mm
 # Max = 1550 = 12 13/16in

 while True:

 self.__steering_control_unit()

 if self.stop_all_threads:
 break

 sleep(0.005)

 def speed_control(self):

 while True:

 while self.e_break_on:
 sleep(0.001)

 if self.first_sp_cpr:
 self.first_sp_cpr = False
 else:
 if (self.DS[0] != self.DS_p[0]) or (self.DS[1] != self.DS_p[1]):
 self.spd.refresh_speed_controller(
 self.DS,
 [
 self.spd.read_left_motor_speed(),
 self.spd.read_right_motor_speed()
]
)
 # self.first_sp_cpr = True

 self.spd.pid_control([self.DS[0], self.DS[1]])

 self.spd.fix_pwm_reading(self.DS[0], self.spd.read_left_motor_speed(),
self.tm, 0)
 self.spd.fix_pwm_reading(self.DS[1],
self.spd.read_right_motor_speed(), self.tm, 1)

 self.DS_p[0] = self.DS[0]
 self.DS_p[1] = self.DS[1]

 if self.stop_all_threads:
 break

 sleep(0.001)

 def start_e_brake(self):

 while True:

 while self.p2.pulse_width() > self.EBakMid:

 self.e_break_on = True

 # Electrical Breaking

138

 GPIO.output(self.EMERGENCY, GPIO.HIGH) # E-Brake ON

 # Physical Braking
 while self.Brkhall > self.BrkStop:
 GPIO.output(self.BRK1_GPIO, GPIO.LOW)
 GPIO.output(self.BRK2_GPIO, GPIO.HIGH)
 self.Brkhall = self.Brkhall - 1
 sleep(0.01)
 print("HALL {}".format(self.Brkhall))
 self.time_stamp = True

 GPIO.output(self.BRK1_GPIO, GPIO.LOW)
 GPIO.output(self.BRK2_GPIO, GPIO.LOW)

 # self.DA = 0
 # self.DL = self.__angle_to_bits(self.DA)
 self.spd.pid_control([0, 0])

 while self.Brkhall < self.BrkReset:
 GPIO.output(self.BRK1_GPIO, GPIO.HIGH)
 GPIO.output(self.BRK2_GPIO, GPIO.LOW)
 self.Brkhall = self.Brkhall + 1
 sleep(0.01)
 print("hall{}".format(self.Brkhall))

 GPIO.output(self.BRK1_GPIO, GPIO.LOW)
 GPIO.output(self.BRK2_GPIO, GPIO.LOW)

 GPIO.output(self.EMERGENCY, GPIO.LOW) # E-Brake OFF

 self.e_break_on = False

 if self.stop_all_threads:
 break

 def tcp_communication(self):

 while True:

 self.clt_st = self.tcp.data_trans(
 float(self.tm_p),
 [
 self.spd.read_left_motor_speed(),
 self.spd.read_right_motor_speed(),
 self.DS[0],
 self.spd.get_pid_parameters()[0],
 self.spd.get_pid_parameters()[1],
 self.spd.get_pid_parameters()[2]
],
 [
 self.CurrentLocation,
 self.CurrentAngle,
 self.DL,
 self.DA
]
)

 # DS, DA are desired values obtained from laptop

139

 self.DS = [self.tcp.get_set_point()[0], self.tcp.get_set_point()[1]]
 self.DA = self.tcp.get_set_point()[2]

 # Dl is converted form DA
 self.DL = self.__angle_to_bits(self.DA)

 if self.clt_st == -1 or self.stop_all_threads:
 self.stop_all_threads = True
 break
 sleep(0.01)

 def __angle_to_bits(self, angle):

 # -411.72
 # bits = (math.sqrt(135606 - 55800 * math.cos(math.pi * (angle + 73.0) /
180.0)) - 411.72) / -0.0621
 bits = (math.sqrt(self.A1 - self.A2 * math.cos(math.pi * (-angle +
self.Theta0) / 180.0)) - self.B) / self.K
 return bits

 def __bits_to_angle(self, bits):

 # angle = int((math.acos((135606 - math.pow((411.72 - 0.0621 * bits), 2))
/ 55800) * (180.0/math.pi)) - 73.0)
 angle = -1*int(
 (math.acos((self.A1 - math.pow((self.B + self.K * bits), 2)) /
self.A2) * (180.0 / math.pi)) - self.Theta0
)
 return angle

 def run_timer(self):

 print(
 "%f\t%f\t%f\t%d\t%f\t%f\t%f\t%f\t%d\t%f\t%d" %
 (
 self.tm,
 self.spd.read_left_motor_speed(),
 self.spd.read_right_motor_speed(),
 self.DS[0],
 self.spd.get_pid_parameters()[0],
 self.spd.get_pid_parameters()[1],
 self.spd.get_pid_parameters()[2],
 self.CurrentLocation,
 self.CurrentAngle,
 self.DL,
 self.DA
)
)
 self.tm_1 = datetime.utcnow()
 self.dt = self.tm_1 - self.tm_0
 self.tm_p = self.tm
 self.tm = self.dt.seconds + self.dt.microseconds * 1.0e-6

 def get_flag_stop_all_threads(self):

 return self.stop_all_threads

 def close(self):

140

 self.stop_all_threads = True
 self.dac.set_voltage(0) # Start DAC's at 0V and wait 3 seconds
 self.dac2.set_voltage(0)
 self.pi.set_PWM_dutycycle(25, 0)
 self.pi.set_PWM_dutycycle(26, 0)
 self.spd.close()
 self.tcp.close()
 GPIO.output(self.EMERGENCY, GPIO.HIGH)
 GPIO.output(self.ABrake, GPIO.HIGH)
 while self.x < self.c:
 print("PiBus is stopping in, {} seconds".format(self.c - self.x))
 self.x = self.x + 1
 sleep(1)
 GPIO.cleanup()

Main subroutine

if __name__ == "__main__":

 pi = pigpio.pi()

 while True:

 integ = Integrate(pi)

 try:

 integ.init_controller()

 threads = []

 thread_motor_speed_controller =
threading.Thread(target=integ.speed_control)
 threads.append(thread_motor_speed_controller)

 thread_steering_controller =
threading.Thread(target=integ.steering_control)
 threads.append(thread_steering_controller)

 thread_tcp_communication =
threading.Thread(target=integ.tcp_communication)
 threads.append(thread_tcp_communication)

 thread_e_break = threading.Thread(target=integ.start_e_brake)
 threads.append(thread_e_break)

 for t in threads:
 t.setDaemon(True)
 t.start()

 integ.start_timer()

 while True: # Infinite loop

141

 integ.run_timer()
 if integ.get_flag_stop_all_threads():
 break
 sleep(0.02)

 integ.close()
 del integ.tcp
 del integ.spd
 del integ

 except KeyboardInterrupt:

 integ.close()
 pi.stop()
 sys.exit()

 # p.cancel()

10.1.4 TCP_client_v1_24.py

This program is run on the laptop that will be connected to the follower module. As of this

moment, the program connects to the follower module Raspberry Pi and sends a final speed for the

follower module’s motors to accelerate or decelerate to. An interrupt can be applied at any time to

disconnect from the follower’s Raspberry Pi.

TCP_client_v1_24.py

"""
TCP_client_v1_2.py
by Chixiang Zhang
9/22/17
"""

import socket
import time
import sys

"""
IMPORTANT:
Do NOT put this program into the RPi. It should be implemented directly on PC/MAC.
Excecute this program right after TCP_server.py starts running.

This program is a TEST CODE for the client part of the TCP/IP communication, which
realizes the half-duplex communication between RPi (Server) and PC/MAC (Client).
In the test code, firstly a counting number which starts from 1000 (increments by
1)
is sent from client to server. The server recieves that number, then responds a

142

counting number starting from 0 (also increments by 1) to the client, which
recieves
that number correspondingly.

Sources/Sample Code (NOT written in English, but it's useful to take a look at the
sample code):
[1] general way to do TCP/IP -
http://blog.sina.com.cn/s/blog_864b79ca0102w795.html
[2] half-duplex communication - http://www.itnose.net/detail/6359275.html
"""

TCP_CLIENT_PAUSE = 0.5
TCP_CLIENT_TRANS_PAUSE = 0.01
#SERVER_OFF = '0'
#SERVER_ON = '1'

#server_status = SERVER_OFF

#RPi's IP
#SERVER_IP = "10.100.51.227"
SERVER_IP = "192.168.1.2"
SERVER_PORT = 4869
#SERVER_IP = '10.0.0.111'
#SERVER_PORT = 5555
#print("Starting socket: TCP...")
time.sleep(TCP_CLIENT_PAUSE)
server_addr = (SERVER_IP, SERVER_PORT)

#creat socket object for client
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

building connection
while True:
 try:
 print("Connecting to server @ %s:%d..." %(SERVER_IP, SERVER_PORT))
 time.sleep(TCP_CLIENT_PAUSE)
 client.connect(server_addr)
 print("Successfully connected!\n")
 break
 except Exception:
 print("Can't connect to server,try it latter!")
 time.sleep(TCP_CLIENT_PAUSE)
 continue

send
count = '100,100#'
#while True:
for i in range(0,100):
 ask = "100" + ",100#"
 client.send(str(ask))
 #print("Sending %s to server" %str(ask))
 #count = count + 1
 # recieve
 response = ''
 while len(response) == 0:
 response = client.recv(128)
 print("%s\n" %str(response))

143

 ask = "H#"
 client.send(str(ask))
 #print("Sending %s to server" %str(ask))
 #count = count + 1
 # recieve
 print('a')
 response = ''
 while len(response) == 0:
 response = client.recv(128)
 #print("%s\n" %str(response))
 print('d')

 for j in range(1):
 time.sleep(0.1)
 ask = 'Q#'
 client.send(str(ask))
 response = ''
 while len(response) == 0:
 response = client.recv(128)
 print("%s\n" %str(response))

 print('c')

 ask = 'H#'
 client.send(str(ask))
 print('b')
 response = ''
 while len(response) == 0:
 response = client.recv(128)
 #print("%s\n" %str(response))

for k in range(0,500):
 time.sleep(0.1)
 ask = '-10,-10#'
 client.send(str(ask))

 response = ''
 while len(response) == 0:
 response = client.recv(128)
 print("%s\n" %str(response))

 ask = "H#"
 client.send(str(ask))

 response = ''
 while len(response) == 0:
 response = client.recv(128)

#for i in range(0,200):
client.send('P#')
client.close()

'''
 try:
 for i in range(0,10):
 ask = str(i*10+10) + ",80#"
 client.send(str(ask))

144

 #print("Sending %s to server" %str(ask))
 #count = count + 1
 # recieve
 response = client.recv(128)
 print("%s\n" %str(response))
 time.sleep(3)
 client.send('Q#')
 response = client.recv(128)
 print("%s\n" %str(response))
 except Exception:
 client.close()
 print("Exception: client closed.")
 break
'''

145

10.2 Appendix B—High-Level C++ Program

10.2.1 Summary

The high-level C++ program was developed to implement vehicle autonomous tracking. It

includes a computer vision module, a laser sensor module, a BP neural network model and a

communication module. The program acquires the visual and distance information from the camera

and laser sensor, then employs a trained neural network controller to calculate the desired

translational and rotational velocities of the follower vehicle. Then, the control commands are sent

to the low-level PID controllers via TCP/IP communication. Meanwhile, the current velocities of

the vehicle could be sent back to the high-level C++ program via TCP/IP communication.

10.2.1.1 Main.cpp

This is the main program and the beginning point of the whole program.

10.2.1.2 Robot_vision.cpp and robot_vision.h

The computer vision module.

10.2.1.3 Robot_laser.cpp and robot_laser.h

The laser measurement module.

10.2.1.4 Robot_bp.cpp and robot_bp.h

The neural network module

10.2.2 Main.cpp

#include <iostream>
#include <fstream>
#include <ctime>
#include <cmath>
#include "robot_util.h"
#include "robot_laser.h"
#include "robot_vision.h"
//#include "robot_bp.h"

146

#include "stdafx.h"
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#include <stdlib.h>
#include <stdio.h>
#include <string>
#include <sstream>
#include <csignal>
// Need to link with Ws2_32.lib, Mswsock.lib, and Advapi32.lib
#pragma comment (lib, "Ws2_32.lib")
#pragma comment (lib, "Mswsock.lib")
#pragma comment (lib, "AdvApi32.lib")

using namespace std;

#define DEFAULT_BUFLEN 512

double vTrans = 0; // The vehicle's translational velocity, unit: cm/s
double vRot = 0; // The vehicles' rotational velocity, unit: degree/s

const int TOTAL_EXECUTION_TIMES = 50000;

const int TOO_CLOSE = 300; // unit:mm
const int SUPER_CLOSE = 200;
const int LASER_FAR = 2000;
const int LASER_NEAR = 1000;

const int MAX_ROT_VEL = 15; // deg/s
const int MIN_ROT_VEL = -15;
const int MAX_VEL = 100; // cm/s
const int MIN_VEL = -100;

// gains
const double K_FORWARD_VEL = 0.05;
const double K_BACKWARD_VEL = 40000; // Change to larger if wanting to back up
faster (40000 for line)
const double K_LEFT_ROT_VEL = -0.02;
const double K_RIGHT_ROT_VEL = -0.02;
const double K_ADJUST_ROT_VEL = 0.98;

const int VISION_WIDTH = RobotVision::VISION_WIDTH;
const int VISION_HEIGHT = RobotVision::VISION_HEIGHT;
const int VISION_LOW = 0.27 * VISION_WIDTH; // 346;
const int VISION_HIGH = 0.72 * VISION_WIDTH; // 921;

const int HARD_SLEEP_TIME = 1; // ms or s?

// Tcp/IP communication setting
SOCKET ConnectSocket=INVALID_SOCKET;
char* IPaddress = "192.168.1.2";

147

char* port = "4869";

// function delaration
void readMatrix(char *fileName, double * myMatrix, int rows, int cols);
void neuralNetwork(double distance, double imageX, int
left_or_right_by_laser_angle, int * output);
SOCKET createSocket(char* address, char* port); //creat a socket
int send(SOCKET ConnectSocket, string stringbuf); // send a string through the
socket
string queryData(SOCKET ConnectSocket); // receive a string through the socket
void sendDesiredVehicleSpeed(double transVel, double rotVel); // transVel: cm/s,
rotVel: deg/s
void getCurrentVehicleSpeed(double *pTrans, double *pRot);
double getVel();
double getRotVel();
void getWheelSpeed(double *pw1, double *pw2);// Unit: deg/s
void setVel(double v);
void setRotVel(double w);
void stopVehicle();
void sig_handler(int sig);
void testVehicleMotion();
void testWheelSpeed();

// NN Architecture
const int INPUT_LAYER_NUM = 3;
const int HIDDEN_LAYER_NUM = 50;
const int OUTPUT_LAYER_NUM = 5;
double w[INPUT_LAYER_NUM][HIDDEN_LAYER_NUM];
double v[HIDDEN_LAYER_NUM][OUTPUT_LAYER_NUM];

int main(int argc, char **argv) {

 // create the communication channel
 ConnectSocket = createSocket(IPaddress, port);

 // Test communication with the low-level controller.
 //testVehicleMotion();
 // testWheelSpeed();
 // return 1;

 ///
 cv::ocl::setUseOpenCL(false);

 //load the weights of the neural network
 readMatrix("w_n.txt", &w[0][0], INPUT_LAYER_NUM, HIDDEN_LAYER_NUM);
 readMatrix("v_n.txt", &v[0][0], HIDDEN_LAYER_NUM, OUTPUT_LAYER_NUM);

 ////////////////////////////
 RobotLaser laser;
 RobotVision vision;

 // Initialize laser before depth camera, otherwise it won't be able to
initialize
 laser.init();

 // Initialize vision including camera and cascade detector
 if (!vision.init("cascade_stop_sign.xml")) {

148

 cout << "error: there was an error when initializing vision component." <<
endl;
 return 1;
 }

 // Initilize the vision kalman filter
 vision.init_kalman_filter();

 // Laser, Vision, BP variables
 double laser_distance = 0;
 double laser_angle_in_degree = 0;
 double laser_start_angle = -15;
 double laser_end_angle = 15;
 double vision_center_x = 0;
 double rot_vel_increment = 0;
 double vel_increment = 0;
 int bp_output[OUTPUT_LAYER_NUM];
 bool is_predicted = false;
 int predicted_counter = 0;
 int predicted_max = 10;
 double temp_vision_area = 0;
 double temp_vision_center_x = 0;
 double temp_vision_center_y = 0;

 // Initialize laser kalman filter
 laser.init_kalman_filter(laser_start_angle, laser_end_angle,
&laser_angle_in_degree);

 // Accessory variables
 int i = 0;
 double tmp = 0;

 // Initial 0 speed
 vTrans=0;
 vRot = 0;

 cout << "\n\n\n ---------------------------------------\n";
 cout << "Start the loop now !!!!!!!!\n\n" << endl;

 while (i < TOTAL_EXECUTION_TIMES) {
 signal(SIGINT, sig_handler);
 i++;

 if (false == laser.is_open()) {
 laser.init();
 }

 //get the distance
 laser_distance = laser.get_distance(laser_start_angle,
laser_end_angle, &laser_angle_in_degree);
 cout << "Laser distance= " << laser_distance << " at angle of"<<
laser_angle_in_degree <<endl;

 //laser_distance = laser.get_distance_on_thread(laser_start_angle,
laser_end_angle, &laser_angle_in_degree);
 if (laser_distance <0) {
 Sleep(HARD_SLEEP_TIME);
 continue;

149

 }

 if (laser_distance < TOO_CLOSE && laser_distance > SUPER_CLOSE) {
 stopVehicle();
 cout << "The distance is too short, the vehicle is stopped! "
<< endl;
 continue;
 }
 else if (laser_distance < SUPER_CLOSE)
 {
 if (getVel() >= 0) {
 //setVel(-100); // the vehcile moves backward
 stopVehicle();
 }
 cout << "The distance is super close, need to stop the
vehicle." << endl;
 continue;
 }

 // get the vision position

 vision_center_x =
vision.detect_with_cascade_on_thread(laser_angle_in_degree, &is_predicted);
 cout << "vision_center=" << vision_center_x << " is_predicted= " <<
is_predicted << endl;

 /* if (is_predicted) {
 predicted_counter++;
 }

 // if the visual position is predicted for too many times
 int look_for_rot_vel = 5; // the rot speed used to search the leader
vehicle
 if (predicted_counter > predicted_max) { // the visual object is
lost, so need to rotate to find it.
 cout << "Stop sign is lost, rotate the vehicle to find it" << endl;
 stopVehicle();
 while
(!vision.detect_wtih_cascade_inline(&temp_vision_center_x, &temp_vision_area,
&temp_vision_center_y)) {
 if (laser_angle_in_degree > 0) {
 // laser senses the object is on the left
 setRotVel(look_for_rot_vel);
 }
 else
 {
 // laser senses the object is on the right
 setRotVel(-look_for_rot_vel);
 }
 Sleep(50);
 cout << "rotating to find the visual target. \n";
 }
 cout << "Found the visual target. \n";

 // once find the visual target, stop rotating and update the Kalman
filter
 vision.correct_kalman_filter(temp_vision_center_x,
temp_vision_center_y);

150

 predicted_counter = 0;
 continue;
 } */

 // New factor, laser_angle_in_degree should be within -120 to 120, make it
range into 0 to 1
 int left_or_right_by_laser_angle = laser_angle_in_degree > 0 ? 0 : 1; //
laser_angle_in_degree / 240 + 0.5;

 // OUTPUT (neuralNetwork): bp_output
 cout << "NN INPUTs (d,x, theta):" << laser_distance << ", " <<
vision_center_x << ", " << left_or_right_by_laser_angle << endl;
 neuralNetwork(laser_distance, vision_center_x,
left_or_right_by_laser_angle, bp_output);
 cout << "NN outputs: " << " [0]=" << bp_output[0] << " [1]=" <<
bp_output[1] << " [2]=" << bp_output[2] << " [3]=" << bp_output[3] << " [4]="
<< bp_output[4] << endl;

 // determine rot_vel_increment
 if (vision_center_x <= VISION_LOW) {
 rot_vel_increment = (vision_center_x - VISION_LOW) *
K_LEFT_ROT_VEL;
 }
 else if (vision_center_x > VISION_LOW && vision_center_x <=
VISION_HIGH) {
 rot_vel_increment = 0;
 }
 else {
 rot_vel_increment = -1.0 * (vision_center_x - VISION_HIGH) *
K_RIGHT_ROT_VEL;
 }

 // determine the vel_increment
 double cur_vel = getVel();
 if (cur_vel > 0) {
 vel_increment = abs(laser_distance) * K_FORWARD_VEL;
 }
 else {
 vel_increment = K_BACKWARD_VEL / abs(laser_distance);
 }

 bool is_rotating = false;

 //execute the actions
 if (bp_output[0] == 1) {

 // Turn left immediately instead of slowly
 /* tmp = getRotVel() + rot_vel_increment;
 if (tmp > MAX_ROT_VEL) {
 tmp = MAX_ROT_VEL;
 }

 setRotVel(tmp); // turn left
 cout << "NN OUTPUT(Action): Turn Left: " << " rotVel= " << tmp
<< endl;
 is_rotating = true; */

151

 }

 if (bp_output[1] == 1) {

 // Turn right immediately instead of slowly
 /* tmp = getRotVel() - rot_vel_increment;
 if (tmp < MIN_ROT_VEL) {
 tmp = MIN_ROT_VEL;
 }

 setRotVel(tmp); //turn right
 cout << "NN OUTPUT(Action): Turn Right: " << " rotVel= " <<
tmp << endl;
 is_rotating = true; */
 }

 /* if (bp_output[4] == 1) {
 cout << "bp_output[4] == 1" << endl;
 if (is_rotating) {
 // reduce rotVel by factor K
 tmp = tmp * K_ADJUST_ROT_VEL;
 setRotVel(tmp); // adjust rotation
 cout << "NN OUTPUT(Action): Adjust Rotation Speed by " <<
K_ADJUST_ROT_VEL << ": " << " rotVel= " << tmp << endl;
 }
 } */

 if (bp_output[0] == 0 && bp_output[1] == 0) {
 setRotVel(0);
 cout << "NN OUTPUT(Action): moveing linearly, no rotation!
Vel: " << getVel() << endl;
 }

 if (bp_output[2] == 1) {

 tmp = getVel();
 if (tmp > 0) {
 tmp += vel_increment;
 } else
 {
 tmp = vel_increment; // ???????????
 }

 if (tmp > MAX_VEL) {
 tmp = MAX_VEL;
 }

 setVel(tmp); //increase speed
 Sleep(100);
 cout << "NN OUTPUT(Action): Increase linear speed. Old Vel="
<< getVel() << ", New Vel="<< tmp <<endl;
 }

 if (bp_output[3] == 1) {

 tmp = getVel();
 if (tmp < 0) {
 tmp -= vel_increment;

152

 }
 else {
 tmp = -vel_increment;
 }

 if (tmp < MIN_VEL) {
 tmp = MIN_VEL;
 }

 setVel(tmp); //decrease speed
 Sleep(1000);
 cout << "NN OUTPUT(Action): Decrease linear speed. Old Vel="
<< getVel() << ", New Vel=" << tmp << endl;
 }

 Sleep(HARD_SLEEP_TIME);
 cout << "---------------------------------------\n\n\n";

 }

 // Close Laser
 laser.close();

 //close the communication and delete the socket
 string end = "P#";
 send(ConnectSocket, end);
 shutdown(ConnectSocket, SD_SEND);
 closesocket(ConnectSocket);

 return 0;
}

void readMatrix(char *fileName, double * myMatrix, int height, int width) {
 std::ifstream file(fileName);
 int count = 0;
 for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j++) {
 file >> *(myMatrix + count);
 count = count + 1;
 }
 }
 file.close();
}

void neuralNetwork(double distance, double imageX, int
left_or_right_by_laser_angle, int *output) {
 double x[INPUT_LAYER_NUM]; //input units;
 double H[HIDDEN_LAYER_NUM]; //hidden units

 //data pre-processing
 if (distance > LASER_FAR) {
 x[0] = 2; // +(distance - LASER_FAR) / distance - 0.5;
 }
 else if (distance <= LASER_FAR && distance > LASER_NEAR) {
 x[0] = 1; // +(distance - LASER_NEAR) / (LASER_FAR - LASER_NEAR) - 0.5;
 }
 else {

153

 x[0] = 0; // +(distance - 0) / LASER_NEAR - 0.5;
 }

 if (imageX >= VISION_HIGH) {
 x[1] = 2; // +(imageX - VISION_HIGH) / imageX - 0.5;
 }
 else if (imageX < VISION_HIGH && imageX > VISION_LOW) {
 x[1] = 1; // +(imageX - VISION_LOW) / (VISION_HIGH - VISION_LOW) - 0.5;
 }
 else {
 x[1] = 0; // +(imageX - 0) / VISION_LOW - 0.5;
 }

 // left or right by laser_angle, already make it between 0 and 1
 x[2] = left_or_right_by_laser_angle;

 //display status
 cout << "Processed INPUT(NN): distance=" << x[0] << " " << ", image
location=" << x[1] << ", left_or_right_by_laser_angle=" << x[2] << "\n";

 // calculate the outputs of the hidden units
 for (int i = 0; i < HIDDEN_LAYER_NUM; i++) {
 double sum = 0;
 for (int j = 0; j < INPUT_LAYER_NUM; j++) {
 sum = sum + x[j] * w[j][i];
 }
 H[i] = 1 / (1 + exp(0 - sum));
 }

 //caculate the outputs of the output layer
 for (int i = 0; i < OUTPUT_LAYER_NUM; i++) {
 double sum = 0;
 for (int j = 0; j < HIDDEN_LAYER_NUM; j++) {
 sum = sum + H[j] * v[j][i];
 }
 *(output + i) = (int)round(sum);
 }
}

SOCKET createSocket(char* address, char* port)
{
 SOCKET ConnectSocket = INVALID_SOCKET;
 WSADATA wsaData;
 struct addrinfo *result = NULL,
 *ptr = NULL,
 hints;
 // Initialize Winsock
 int iResult;
 iResult = WSAStartup(MAKEWORD(2, 2), &wsaData);
 if (iResult != 0) {
 printf("WSAStartup failed with error: %d\n", iResult);
 return INVALID_SOCKET;
 }

 ZeroMemory(&hints, sizeof(hints));
 hints.ai_family = AF_UNSPEC;

154

 hints.ai_socktype = SOCK_STREAM;
 hints.ai_protocol = IPPROTO_TCP;

 // Resolve the server address and port
 iResult = getaddrinfo(address, port, &hints, &result);
 if (iResult != 0) {
 printf("getaddrinfo failed with error: %d\n", iResult);
 WSACleanup();
 return INVALID_SOCKET;
 }

 // Attempt to connect to an address until one succeeds
 for (ptr = result; ptr != NULL; ptr = ptr->ai_next) {

 // Create a SOCKET for connecting to server
 ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype,
 ptr->ai_protocol);
 if (ConnectSocket == INVALID_SOCKET) {
 printf("socket failed with error: %ld\n", WSAGetLastError());
 WSACleanup();
 return INVALID_SOCKET;
 }

 // Connect to server.
 iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen);
 if (iResult == SOCKET_ERROR) {
 closesocket(ConnectSocket);
 ConnectSocket = INVALID_SOCKET;
 continue;
 }
 break;
 }
 return ConnectSocket;
}

int send(SOCKET ConnectSocket, string stringbuf) // send a string
{
 int iResult;
 char * sendbuf = new char[stringbuf.length() + 1];
 strcpy_s(sendbuf, stringbuf.length() + 1, stringbuf.c_str());
 // Send an initial buffer
 char r[1] = "";
 iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0);
 if (iResult == SOCKET_ERROR) {
 printf("send failed with error: %d\n", WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return 0;
 }
 //printf("Bytes Sent: %ld\n", iResult);
 //send by send will cause failing to the second send,
 //so have to insert a "receive" between 2 "send" in clinet
 iResult = 0;
 //while (1)
 //{
 // if (r[0] == '1')
 // break;
 // recv(ConnectSocket, r, 1, 0);

155

 //}
 //
 recv(ConnectSocket, r, 1, 0);
 if (r[0] == 'S')
 {
 iResult = 1;
 // printf("send successfully\n");
 }
 else if(r[0] == 'K')
 iResult = 1;
 else {
 printf("server don't receive\n");
 }

 return iResult;
}

string queryData(SOCKET ConnectSocket) // receive a string
{

 int iResult;
 char recvbuf[DEFAULT_BUFLEN];
 int recvbuflen = DEFAULT_BUFLEN;
 char *s = "Q#";
 string str;
 iResult = send(ConnectSocket, s, 2, 0);
 //cout << " query iResult " << iResult << endl;
 if (iResult == SOCKET_ERROR) {
 printf("send failed with error: %d\n", WSAGetLastError());
 closesocket(ConnectSocket);
 WSACleanup();
 return str;
 }
 // Receive until the peer closes the connection
 do {
 //cout << "waiting receive queryData " << endl;
 iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0);
 //cout << iResult << endl;
 if (iResult > 0) {
 //printf("Bytes received: %d\n", iResult);
 str = recvbuf;
 break;
 }
 else if (iResult == 0)
 printf("Connection closed\n");
 else
 printf("recv failed with error: %d\n", WSAGetLastError());

 } while (iResult > 0);
 return str;
}

void setWheelSpeed(double w1, double w2) { //deg/s

 // cout << "Dessied W1(deg/s)=" << w1 << " Desired W2=" << w2 << endl;
 // cout << "--\n"
<< endl;

156

 //convert from deg/s to RPM
 w1 = w1 / 6;
 w2 = w2 / 6;

 // begin to send w1 and w2
 string sendbuf;
 sendbuf = to_string(w1) + "," + to_string(w2) + "#";
 send(ConnectSocket, sendbuf);

 string heartBag = "H#";
 send(ConnectSocket, heartBag);
 return;
}

void sendDesiredVehicleSpeed(double transVel, double rotVel) // units: cm/s,
deg/s
{
 //the receiving in utf8 will case messed up when show on console
 //however, it is only a display issue.
 //system("chcp 65001");

 cout << "\n\n--" <<
endl;
 cout << "Desired V=" << transVel << " desired W=" << rotVel << endl;

 //convert v and w into w1 and w2
 // unit of v: cm/s
 //unit of w: deg/s

 rotVel = rotVel / 180 * 3.14159; //convert deg/s to radian/s
 double L = 37.7; // the distance between two wheels, unit: cm
 double D = 45.72; // the diameter of the wheels, unit: cm

 double w1 = 1 / D*transVel + L / (2 * D)*rotVel;
 double w2= 1 / D*transVel - L / (2 * D)*rotVel;

 // convert unit from rad/s to deg/s

 w1 = w1 / 3.14159 * 180;
 w2 = w2 / 3.14159 * 180;

 //send th desired speeds of two wheels
 setWheelSpeed(w1, w2);

 return;
}

void getCurrentVehicleSpeed(double *pTrans, double *pRot) //Units: cm/s, deg/s
{
 double w1, w2;
 getWheelSpeed(&w1, &w2);

 // convert from deg/s to radian/s
 w1 = w1 / 180 * 3.14159;
 w2 = w2 / 180 * 3.14159;

 // get v and w

157

 double L = 37.7; // the distance between two wheels, unit: cm
 double D = 45.72; // the diameter of the wheels, unit: cm
 double v = D / 2 * w1 + D / 2 * w2;
 double w = D / L*w1 - D / L*w2;

 // convert from radian/s to deg
 w = w / 3.14159 * 180;

 //cout << "v=" << v << " w=" << w << endl;
 (*pTrans) = v;
 (*pRot) = w;

 return;
}

void getWheelSpeed(double *pw1, double *pw2) { // Unit: deg/s

 string recvBuff = "";
 double w1 = 0, w2 = 0; // the velocities of the wheels

 recvBuff = queryData(ConnectSocket);
 // parse the recvBuff to get w1 and w2
 // insert code here
 //
 //
 //
 int separ = recvBuff.find(',');
 istringstream istr(recvBuff.substr(0, separ));
 istr >> w1;
 istringstream istr2(recvBuff.substr(separ + 1, recvBuff.length() - separ));
 istr2 >> w2;

 // cout << "w1=" << w1 << " w2=" << w2 << " Unit: RPM" << endl;

 // convert from RPM to deg/s
 w1 = w1 * 6;
 w2 = w2 * 6;

 (*pw1) = w1;
 (*pw2) = w2;

 string heartBag = "H#";
 send(ConnectSocket, heartBag);

 return;
}

double getVel() { // Unit: cm/s
 double v, w;
 getCurrentVehicleSpeed(&v, &w);
 return v;
}

double getRotVel() { // unit: deg/s
 double v, w;
 getCurrentVehicleSpeed(&v, &w);

158

 return w;
}

void setVel(double v) { // unit: cm/s
 double tmpV, tmpW;
 // getCurrentVehicleSpeed(&tmpV, &tmpW);
 sendDesiredVehicleSpeed(v, 0);
 string heartBag = "H#";
 send(ConnectSocket, heartBag);
}

void setRotVel(double w) { // unit: deg/s
 double tmpV, tmpW;
 getCurrentVehicleSpeed(&tmpV, &tmpW);
 sendDesiredVehicleSpeed(tmpV, w);
 string heartBag = "H#";
 send(ConnectSocket, heartBag);
}

void stopVehicle() {
 sendDesiredVehicleSpeed(0, 0);
 string heartBag = "H#";
 send(ConnectSocket, heartBag);
}

//for keyboard interrupt
void sig_handler(int sig)
{
 if (sig == SIGINT)
 {
 string s = "P#P#P#";
 cout << " cc" << endl;
 send(ConnectSocket,s);
 }
}

void testVehicleMotion() { ///// Test the communication with the Rasverry PI

 double desiredV = 0, desiredW = 0; // desired v and w
 double curV = 0, curW = 0; //current v and w
 int i = 1;

 double w1, w2;

 int timeDelay = 10; // unit: ms
 int tMax = 10000; // unit:ms

 // set a linear speed
 cout << "\n\n Set new V=60 \n\n";
 setVel(60);
 int t = 0;

 while (t <=tMax) {

159

 t = t+timeDelay;

 Sleep(timeDelay);
 getWheelSpeed(&w1, &w2);
 getCurrentVehicleSpeed(&curV, &curW);
 cout << t << " w1=" << w1 << " w2=" << w2 << " V=" << curV << " W=" <<
curW<<endl;
 }
 // speed1.close();

 cout << "---------------------------------------" << endl;
 // stop the vehicle
 cout << "\n\n Stop the vehicle now \n\n";
 stopVehicle();

 t = 0;

 while (t <= 10000) {

 t = t + timeDelay;

 Sleep(timeDelay);
 getWheelSpeed(&w1, &w2);
 getCurrentVehicleSpeed(&curV, &curW);
 cout << t << " " << "w1=" << w1 << " w2=" << w2 << " v=" << curV << " w="
<< curW << endl;
 }

 cout << "---------------------------------------" << endl;

 //ofstream speed2("speed2.txt", std::ofstream::trunc);
 cout << "\n\n Set new V=30 deg/s \n\n";
 setVel(30);
 t = 0;

 while (t<=tMax) {

 t = t+timeDelay;

 Sleep(timeDelay);
 getWheelSpeed(&w1, &w2);
 getCurrentVehicleSpeed(&curV, &curW);
 cout << t << " " <<"w1="<< w1 << " w2=" << w2 << " v=" << curV << " w=" <<
curW << endl;
 }
 // speed2.close();*/
 cout << "---------------------------------------" << endl;

 //ofstream speed2("speed2.txt", std::ofstream::trunc);
 cout << "\n\n Set new V=60 \n";
 // setVel(60);
 t = 0;

 while (t <= tMax) {

160

 t = t + timeDelay;

 Sleep(timeDelay);
 getWheelSpeed(&w1, &w2);
 getCurrentVehicleSpeed(&curV, &curW);
 cout << t << " w1=" << w1 << " w2=" << w2 << " v=" << curV << " w=" <<
curW << endl;
 }
 // speed2.close();*/
 cout << "---------------------------------------" << endl;

 // stop the vehicle
 cout << "\n\n stop the vehicle and close communication !!!! \n\n";
 stopVehicle();
 Sleep(timeDelay);

 //close the communication
 string end = "P#";
 send(ConnectSocket, end);
 shutdown(ConnectSocket, SD_SEND);
 closesocket(ConnectSocket);
 return;
}

void testWheelSpeed(){
 double desiredW[12] = {10,20,30,40,0, 10, 20,30,60,0,100,150}; //RPM

 double t;
 double tMax =10000; //ms
 double timeDelay = 10; //ms

 double w1, w2;

 for (int i = 0; i < 12; i++) {

 cout << "\n\n---" <<
endl;
 cout << "Desired w1 (RPM)=" << desiredW[i] << " Desired w2 (RPM)=" <<
desiredW[i] << endl;
 cout << "\n\n---\n" <<
endl;

 w1 = desiredW[i] * 6; //RPM --> deg/s
 w2 = desiredW[i] * 6; //RPM --> deg/s
 setWheelSpeed(w1, w2);

 t = 0;
 while (t <= tMax) {
 t = t + timeDelay;
 Sleep(timeDelay);
 getWheelSpeed(&w1, &w2);
 // cout << t << " w1 (RPM)=" << w1/6 << " w2 (RPM)=" << w2/6 << endl;
 cout << t <<" "<< w1 / 6 << " " << w2 / 6 << endl;
 }

 }

161

 // stop the vehicle
 cout << "\n\n stop the vehicle and close communication !!!! \n\n";
 stopVehicle();
 Sleep(timeDelay);

 //close the communication
 string end = "P#";
 send(ConnectSocket, end);
 shutdown(ConnectSocket, SD_SEND);
 closesocket(ConnectSocket);
 return;
}

10.2.3 Robot_vision.h

#ifndef ROBOT_VISION_H
#define ROBOT_VISION_H

#include <thread>
#include <atomic>
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/video/tracking.hpp"
#include "opencv2/core/ocl.hpp"
#include <ctime>
#include <iostream>
#include <fstream>
#include "robot_util.h"
#include "Aria.h"
#include "ArRobot.h"
#include "robot_util.h"
#include <zed/Camera.hpp>
using namespace std;

class RobotVision {
private:
 // MultiThread
 std::atomic<bool> is_data_available;
 std::atomic<bool> is_started;
 std::thread *current_thread;

 // Cascade
 cv::CascadeClassifier *cascade_classifier;
 cv::VideoCapture *video_capture;
 std::atomic<double> center_x;
 std::atomic<double> center_y;
 std::atomic<double> area;

 // Kalman Filter
 static const int NUM_KF_STATE = 5;
 static const int NUM_KF_MEASUREMENT = 2;
 cv::KalmanFilter *kalman_filter;
 cv::Mat_<float> measurement;

162

 // Debug Log
 bool is_debug;

 // Experiment Data Output
 ofstream *output_real;
 ofstream *output_predicted;

 // Depth Camera
 static const bool USE_DEPTH_CAMERA = true;
 sl::zed::Camera *zed;
public:
 ofstream *output_vision_time;
 static const int VISION_WIDTH = 1280;
 static const int VISION_HEIGHT = 720;
 /*static const int VISION_WIDTH = 640;
 static const int VISION_HEIGHT = 480;*/

 RobotVision();
 bool init(cv::String cascadeFilePath);
 bool init_kalman_filter();
 double detect_with_cascade_on_thread(double laser_angle_in_degree, bool
*is_predicted);
 bool detect_wtih_cascade_inline(double *center_x, double *area, double
*center_y);
 void correct_kalman_filter(double center_x, double center_y);
};
#endif

10.2.4 Robot_vision.cpp

#include "robot_vision.h"

RobotVision::RobotVision() {
 is_data_available = false;
 is_started = false;
 is_debug = false;

 output_real = new ofstream("robot_vision_cascade_real.txt");
 output_predicted = new
ofstream("robot_vision_kalman_filter_predicted.txt");
 output_vision_time = new ofstream("output_vision_time.txt");
}

bool RobotVision::init(cv::String cascadeFilePath) {
 cascade_classifier = new cv::CascadeClassifier();
 if (!cascade_classifier->load(cascadeFilePath)) {
 std::cout << "Error: There was an error when loading cascade xml
file." << endl;
 return false;
 }

 if (USE_DEPTH_CAMERA) {
 zed = new sl::zed::Camera(sl::zed::HD720);
 sl::zed::ERRCODE err = zed->init(sl::zed::MODE::PERFORMANCE, 0, true);

 // Quit if an error occurred

163

 if (err != sl::zed::SUCCESS) {
 std::cout << "Error: Unable to init the ZED:" << errcode2str(err) <<
std::endl;
 delete zed;
 return false;
 }
 }
 else {
 video_capture = new cv::VideoCapture();
 if (!video_capture->open(0)) {
 std::cout << "Error: There was an error when opening camera." << endl;
 return false;
 }
 }

 kalman_filter = new cv::KalmanFilter(RobotVision::NUM_KF_STATE,
RobotVision::NUM_KF_MEASUREMENT);
 kalman_filter->transitionMatrix = (
 cv::Mat_<float>(5, 5) <<
 1, 0, 1, 0, 0, // x
 0, 1, 0, 1, 0, // y
 0, 0, 1, 0, 1, // Vx
 0, 0, 0, 1, 0, // Vy
 0, 0, 0, 0, 1); // Ax

 measurement = cv::Mat_<float>(2, 1);
 measurement.setTo(cv::Scalar(0));
 return true;
}

void detect_with_cascade_raw(cv::VideoCapture *video_capture, sl::zed::Camera
*zed, bool use_depth_camera, cv::CascadeClassifier *cascade_classifier,
 std::atomic<bool> *is_data_available, std::atomic<double> *return_center_x,
std::atomic<double> *return_center_y,
 std::atomic<double> *return_area, bool is_debug) {
 cv::Mat captureFrame, grayscaleFrame;
 double area = 0, center = 0;
 std::vector<cv::Rect> stops;

 int NUM_OF_SPLITS = 3;
 int *splits = new int[NUM_OF_SPLITS];
 int CLOSE_THRESHOLD = 245;
 int area_left = 0, area_right = 0;

 // Initialize all to 0
 for (int i = 0; i < NUM_OF_SPLITS; i++) {
 splits[i] = 0;
 }

 cv::namedWindow("outputCapture", 1);
 if (use_depth_camera) {
 int width = zed->getImageSize().width;
 int height = zed->getImageSize().height;
 cv::Mat image(height, width, CV_8UC4, 1);
 cv::Mat depth(height, width, CV_8UC4, 1);

 if (!zed->grab(sl::zed::SENSING_MODE::FULL))
 {

164

 // Retrieve left color image
 sl::zed::Mat left = zed->retrieveImage(sl::zed::SIDE::LEFT);
 memcpy(image.data, left.data, width * height * 4 * sizeof(uchar));

 // Retrieve depth map
 sl::zed::Mat depthmap = zed-
>normalizeMeasure(sl::zed::MEASURE::DEPTH);
 memcpy(depth.data, depthmap.data, width * height * 4 * sizeof(uchar));

 /*for (int i = 1; i < RobotVision::VISION_WIDTH; i++) {
 for (int j = 1; j < RobotVision::VISION_HEIGHT; j++) {
 sl::uchar3 depth_value = depthmap.getValue(i, j);
 if (depth_value.c1 >= CLOSE_THRESHOLD && depth_value.c2 >=
CLOSE_THRESHOLD && depth_value.c3 >= CLOSE_THRESHOLD) {
 for (int k = 1; k <= NUM_OF_SPLITS; k++) {
 if (i >= RobotVision::VISION_WIDTH / NUM_OF_SPLITS *
(k - 1) && i < RobotVision::VISION_WIDTH / NUM_OF_SPLITS * k) {
 splits[k - 1] += 1;
 }
 }
 }
 }
 }

 int max_split = -1;
 for (int k = 1; k <= NUM_OF_SPLITS; k++) {
 if (splits[k - 1] > max_split) {
 area_left = RobotVision::VISION_WIDTH / NUM_OF_SPLITS * (k -
1);
 area_right = RobotVision::VISION_WIDTH / NUM_OF_SPLITS * k;
 max_split = splits[k - 1];
 }
 }*/

 captureFrame = image;
 }
 }
 else {
 video_capture->read(captureFrame);
 }

 // No need to convert
 //cvtColor(captureFrame, grayscaleFrame, CV_BGR2GRAY);
 //equalizeHist(grayscaleFrame, grayscaleFrame);
 /*std::cout << "Vision Image Size: " << captureFrame.rows << ", " <<
captureFrame.cols << std::endl;*/

 if (use_depth_camera) {
 //cv::Rect temp(area_left, 1, 1280 / NUM_OF_SPLITS, 719);
 //grayscaleFrame = captureFrame(temp);
 grayscaleFrame = captureFrame.clone();
 }
 else {
 grayscaleFrame = captureFrame.clone();
 }

 cascade_classifier->detectMultiScale(grayscaleFrame, stops, 1.05, 3,
CV_HAAR_FIND_BIGGEST_OBJECT | CV_HAAR_SCALE_IMAGE, cv::Size(60, 60));

165

 if (stops.empty()) {
 //std::cout << "Info: Did not detect the object!" << endl;
 (*return_center_x) = -1.0;
 (*return_center_y) = -1.0;
 *is_data_available = true;
 // cv::imshow("outputCapture", captureFrame);
 cv::waitKey(1);
 return;
 }

 double tmpArea = 0;
 double temp_center_x = 9999;
 for (int i = 0; i < stops.size(); i++) {
 cv::Point pt1(area_left + stops[i].x + stops[i].width, stops[i].y +
stops[i].height);
 cv::Point pt2(area_left + stops[i].x, stops[i].y);
 rectangle(captureFrame, pt1, pt2, cvScalar(0, 255, 0, 0), 1, 8, 0);
 if (stops[i].x < temp_center_x) {
 temp_center_x = area_left + stops[i].x;
 // This is very important, need to calculate the center of the
detected image, instead of left-up corner
 (*return_center_x) = area_left + stops[i].x + stops[i].width /
2;
 (*return_center_y) = area_left + stops[i].y + stops[i].height
/ 2;
 }
 }

 cv::imshow("outputCapture", captureFrame);
 cv::waitKey(1);
 (*return_area) = tmpArea;
 if (is_debug) {
 std::cout << "Center: " << center << "; Area:" << area << std::endl;
 }

 *is_data_available = true;
}

bool RobotVision::detect_wtih_cascade_inline(double *return_center_x, double
*return_area, double *return_center_y) {
 std::atomic<double> init_center_x = -1.0;
 std::atomic<double> init_center_y = -1.0;
 std::atomic<double> init_return_area = -1.0;
 std::atomic<bool> init_is_data_available = false;
 clock_t timer_start, timer_end;

 timer_start = clock();
 detect_with_cascade_raw(video_capture, zed, USE_DEPTH_CAMERA,
cascade_classifier, &init_is_data_available,
 &init_center_x, &init_center_y, &init_return_area, is_debug);

 if (is_debug) {
 timer_end = clock();
 //std::cout << "It takes " << RobotUtil::get_diff_in_ms(timer_start,
timer_end) << " ms for vision to execute once." << std::endl;
 }

166

 (*return_center_x) = init_center_x;
 (*return_center_y) = init_center_y;
 (*return_area) = init_return_area;

 if (init_center_x < 0) {
 return false;
 }
 return true;
}

void detect_with_cascade_raw_loop(RobotVision *vision, std::atomic<double>
*return_center_x, std::atomic<double> *return_center_y,
 std::atomic<double> *return_area, std::atomic<bool> *is_data_available,
double laser_angle_in_degree) {

 double vision_area = 0;
 double vision_center_x = 0;
 double vision_center_y = 0;
 long temp_vision_time_start = RobotUtil::get_current_time_in_ms();
 boolean result = false;

 while (true) {
 temp_vision_time_start = RobotUtil::get_current_time_in_ms();
 result = vision->detect_wtih_cascade_inline(&vision_center_x,
&vision_area, &vision_center_y);
 (*vision->output_vision_time) << RobotUtil::get_current_time_in_ms()
<< " " << (RobotUtil::get_current_time_in_ms() - temp_vision_time_start) << endl;
 if (result) {
 break;
 }
 }

 (*return_center_x) = vision_center_x;
 (*return_center_y) = vision_center_y;
 (*return_area) = vision_area;
 (*is_data_available) = true;
}

bool RobotVision::init_kalman_filter() {

 std::atomic<double> init_center_x = -1.0;
 std::atomic<double> init_center_y = -1.0;
 std::atomic<double> init_return_area = -1.0;
 std::atomic<bool> init_is_data_available = false;

 while (true) {
 detect_with_cascade_raw(video_capture, zed, USE_DEPTH_CAMERA,
cascade_classifier, &init_is_data_available,
 &init_center_x, &init_center_y, &init_return_area, is_debug);
 if (init_center_x > 0 && init_center_y > 0) {
 (*output_real) << RobotUtil::get_current_time_in_ms() << " "
<< init_center_x << endl;

 kalman_filter->statePost.at<float>(0) = init_center_x;
 kalman_filter->statePost.at<float>(1) = init_center_y;
 kalman_filter->statePost.at<float>(2) = 0;
 kalman_filter->statePost.at<float>(3) = 0;
 kalman_filter->statePost.at<float>(4) = 0;

167

 setIdentity(kalman_filter->measurementMatrix);
 setIdentity(kalman_filter->processNoiseCov,
cv::Scalar::all(1e-4));
 setIdentity(kalman_filter->measurementNoiseCov,
cv::Scalar::all(10));
 setIdentity(kalman_filter->errorCovPost, cv::Scalar::all(.1));

 //if (is_debug) {
 cout << "Initializing vision kalman filter done: " <<
init_center_y << ", " << init_center_y << endl;
 //}

 return true;
 }
 }

 return false;
}

void RobotVision::correct_kalman_filter(double center_x, double center_y) {
 if (center_x > 0 && center_y > 0) {
 measurement(0) = center_x;
 measurement(1) = center_y;
 kalman_filter->correct(measurement);
 }
}

double RobotVision::detect_with_cascade_on_thread(double laser_angle_in_degree,
bool *is_predicted) {
 // If the image data is available
 if (is_data_available) {
 is_data_available = false;
 is_started = false;
 current_thread->join();
 (*is_predicted) = false;

 (*output_real) << RobotUtil::get_current_time_in_ms() << " " <<
center_x << endl;
 //cout << "Real" << endl;

 if (center_x > 0 && center_y > 0) {
 measurement(0) = center_x;
 measurement(1) = center_y;
 kalman_filter->correct(measurement);

 if (is_debug) {
 // cout << "Real Found, Correct KF: " << center_x << ", "
<< center_y << endl;
 }

 return center_x;
 }
 else {
 cv::Mat prediction = kalman_filter->predict();

 if (is_debug) {

168

 // cout << "Real Not Found, Use Predicted: " <<
prediction.at<float>(0) << ", " << prediction.at<float>(1) << endl;
 }

 return prediction.at<float>(0);
 }
 }
 // If the image data is not available
 else {
 // If the thread of getting the data is not started
 if (false == is_started) {
 //current_thread = new std::thread(&detect_with_cascade_raw,
video_capture, cascade_classifier, &is_data_available, ¢er_x, ¢er_y,
&area, is_debug);
 current_thread = new
std::thread(&detect_with_cascade_raw_loop, this, ¢er_x, ¢er_y, &area,
&is_data_available, laser_angle_in_degree);
 is_started = true;
 }

 cv::Mat prediction = kalman_filter->predict();
 (*output_predicted) << RobotUtil::get_current_time_in_ms() << " " <<
prediction.at<float>(0) << endl;
 // cout << "Predicted" << endl;

 if (is_debug) {
 // cout << "Predicted: " << prediction.at<float>(0) << ", " <<
prediction.at<float>(1) << endl;
 }

 (*is_predicted) = true;

 return prediction.at<float>(0);
 }
}

10.2.5 Robot_laser.h

#ifndef ROBOT_LASER_H
#define ROBOT_LASER_H

#include <iostream>
#include <thread>
#include <atomic>
#include <math.h>
#include <fstream>
#include "Urg_driver.h"
#include "robot_util.h"
#include "opencv2/video/tracking.hpp"
using namespace qrk;
using namespace std;

class RobotLaser {
private:
 // MultiThread
 std::atomic<bool> is_data_available;

169

 std::atomic<bool> is_started;
 std::thread *current_thread;

 // Laser Urg
 std::atomic<double> _distance;
 std::atomic<double> _laser_angle_in_degree;

 // Kalman Filter
 static const bool USE_KALMAN_FILTER = true;
 static const int NUM_KF_STATE = 5;
 static const int NUM_KF_MEASUREMENT = 2;
 cv::KalmanFilter *kalman_filter;
 cv::Mat_<float> measurement;
 // If we put laser on thread, then we don't need to initialize the laser any
more
 bool is_kalman_filter_initialized = false;

 // Experiment Data Output
 ofstream *output_real;
 ofstream *output_predicted;
 ofstream *output_real_angle;
 ofstream *output_predicted_angle;
public:
 Urg_driver *urg;

 // Debug Log
 bool is_debug;

 static const Urg_driver::connection_type_t SERIAL_TYPE =
Urg_driver::Serial;
 static const Urg_driver::connection_type_t ETHERNET_TYPE =
Urg_driver::Ethernet;
 static const int URG_MIN_DEGREE = -120;
 static const int URG_MAX_DEGREE = 120;
 static const int URG_TOTAL_DEGREE = 240;
 static const int URG_NUM_OF_DATA_POINTS_RETURNED = 682;

 RobotLaser();
 bool init();
 bool init(Urg_driver::connection_type_t type);
 bool init_kalman_filter(int start_angle, int end_angle, double
*laser_angle_in_degree);
 bool is_open();
 void close();
 double get_distance(int start_angle, int end_angle, double
*laser_angle_in_degree);
 double get_distance_on_thread(int start_angle, int end_angle, double
*laser_angle_in_degree);
};
#endif

10.2.6 Robot_laser.cpp

#include "robot_laser.h"

RobotLaser::RobotLaser() {

170

 is_data_available = false;
 is_started = false;
 is_debug = true;

 if (USE_KALMAN_FILTER) {
 output_real = new ofstream("robot_laser_real.txt");
 output_predicted = new
ofstream("robot_laser_kalman_filter_predicted.txt");
 output_real_angle = new ofstream("robot_laser_real_angle.txt");
 output_predicted_angle = new
ofstream("robot_laser_kalman_filter_predicted_angle.txt");
 }
}

bool RobotLaser::init() {
 if (USE_KALMAN_FILTER) {
 kalman_filter = new cv::KalmanFilter(RobotLaser::NUM_KF_STATE,
RobotLaser::NUM_KF_MEASUREMENT);
 kalman_filter->transitionMatrix = (
 cv::Mat_<float>(5, 5) <<
 1, 1, 0, 0, 0, // distance
 0, 1, 1, 0, 0, // Vx
 0, 0, 1, 0, 0, // Ax
 0, 0, 0, 1, 1, // laser angle
 0, 0, 0, 0, 1); // laser angle change speed

 measurement = cv::Mat_<float>(2, 1);
 measurement.setTo(cv::Scalar(0));
 }

 return init(RobotLaser::SERIAL_TYPE);
}

bool RobotLaser::init(Urg_driver::connection_type_t type) {
 urg = new Urg_driver();
 const char *device_name;
 int baudrate_or_port;

 if (type == Urg_driver::Serial) {
 device_name = "COM3";
 baudrate_or_port = 115200;
 }
 else if (type == Urg_driver::Ethernet) {
 device_name = "192.168.0.10";
 baudrate_or_port = 10940;
 }
 else {
 cout << "Error: Wrong Urg_driver connection type." << endl;
 return false;
 }

 if (urg->is_open()) {
 urg->close();
 }

 if (!urg->open(device_name, baudrate_or_port, type)) {
 cout << "Error: There was an error when executing
Urg_driver::open(): " << urg->what() << endl;

171

 return false;
 }

 return true;
}

bool RobotLaser::is_open() {
 return urg->is_open();
}

void RobotLaser::close() {
 urg->close();
}

double RobotLaser::get_distance(int start_angle, int end_angle, double
*laser_angle_in_degree) {
 // Urg laser device will return 682 data points
 // The scan range of Urg laser device is -120 degree to 120 degree

 if (start_angle > RobotLaser::URG_MAX_DEGREE
 || start_angle < RobotLaser::URG_MIN_DEGREE
 || end_angle > RobotLaser::URG_MAX_DEGREE
 || end_angle < RobotLaser::URG_MIN_DEGREE
 || start_angle > end_angle) {
 cout << "Error: Invalid input range. Range should be within -120
degree to 120 degree." << endl;
 return -1.0;
 }

 clock_t timer_start, timer_end;
 timer_start = clock();

 urg->start_measurement(Urg_driver::Distance, 1, 0);

 vector<long> data;
 long time_stamp = 0;
 if (!urg->get_distance(data, &time_stamp)) {
 cout << "Error: There was an error when executing
Urg_driver::get_distance(): " << urg->what() << endl;
 urg->close();
 return -1.0;
 }

 double degree_per_points = RobotLaser::URG_TOTAL_DEGREE * 1.0 /
RobotLaser::URG_NUM_OF_DATA_POINTS_RETURNED;
 double degree_counter = -120.0;
 double min_distance = 99999.0;
 int min_distance_data_point_index = -1;
 double min_distance_degree = 0.0;
 for (int i = 0; i < data.size(); i++) {
 if (degree_counter > start_angle && degree_counter < end_angle) {
 if (data[i] > 50 && data[i] < min_distance) {
 min_distance_data_point_index = i;
 min_distance_degree = degree_counter;
 min_distance = data[i];
 }
 }
 degree_counter += degree_per_points;

172

 }

 if (min_distance_data_point_index == -1) {
 cout << "Error: Cannot find the closest distance." << endl;
 return -1.0;
 }

 if (is_debug) {
 //cout << "Found the closest distance: " << min_distance << " at "
<< min_distance_degree
 //<< " degree with data point index [" <<
min_distance_data_point_index << "]." << endl;
 timer_end = clock();
 // cout << "It takes " << RobotUtil::get_diff_in_ms(timer_start,
timer_end) << " ms for laser measurement only." <<endl;
 }

 if (USE_KALMAN_FILTER) {
 // Use Kalman Filter to correct distance
 if (is_kalman_filter_initialized) {
 measurement(0) = min_distance;
 measurement(1) = min_distance_degree;
 kalman_filter->correct(measurement);
 cv::Mat prediction = kalman_filter->predict();

 // cout << "KalmanFilter revised distance: " <<
prediction.at<float>(0) << ", " << prediction.at<float>(1) << endl;
 // cout << "Original measured distance: " << min_distance << ", "
<< min_distance_degree << endl;

 (*output_predicted) << RobotUtil::get_current_time_in_ms() <<
" " << prediction.at<float>(0) << endl;
 (*output_real) << RobotUtil::get_current_time_in_ms() << " "
<< min_distance << endl;
 (*output_predicted_angle) <<
RobotUtil::get_current_time_in_ms() << " " << prediction.at<float>(1) << endl;
 (*output_real_angle) << RobotUtil::get_current_time_in_ms() <<
" " << min_distance_degree << endl;

 min_distance = prediction.at<float>(0);
 min_distance_degree = prediction.at<float>(1);
 }
 }

 (*laser_angle_in_degree) = min_distance_degree;

 return min_distance;
}

bool RobotLaser::init_kalman_filter(int start_angle, int end_angle, double
*laser_angle_in_degree) {

 if (USE_KALMAN_FILTER) {
 if (false == is_open()) {
 init();
 }

173

 double min_distance = get_distance(start_angle, end_angle,
laser_angle_in_degree);

 kalman_filter->statePost.at<float>(0) = min_distance;
 kalman_filter->statePost.at<float>(1) = (*laser_angle_in_degree);
 kalman_filter->statePost.at<float>(2) = 0;
 kalman_filter->statePost.at<float>(3) = 0;
 kalman_filter->statePost.at<float>(4) = 0;

 setIdentity(kalman_filter->measurementMatrix);
 setIdentity(kalman_filter->processNoiseCov, cv::Scalar::all(1e-4));
 setIdentity(kalman_filter->measurementNoiseCov,
cv::Scalar::all(10));
 setIdentity(kalman_filter->errorCovPost, cv::Scalar::all(.1));

 cout << "Initializing laser kalman filter done: " << min_distance <<
", " << (*laser_angle_in_degree) << endl;
 (*output_real) << RobotUtil::get_current_time_in_ms() << " " <<
min_distance << endl;
 (*output_real_angle) << RobotUtil::get_current_time_in_ms() << " "
<< (*laser_angle_in_degree) << endl;

 is_kalman_filter_initialized = true;
 }

 return true;
}

void get_distance_raw(RobotLaser *laser, int start_angle, int end_angle,
std::atomic<bool> *is_data_available,
 std::atomic<double> *distance, std::atomic<double> *laser_angle_in_degree)
{

 if (start_angle > RobotLaser::URG_MAX_DEGREE
 || start_angle < RobotLaser::URG_MIN_DEGREE
 || end_angle > RobotLaser::URG_MAX_DEGREE
 || end_angle < RobotLaser::URG_MIN_DEGREE
 || start_angle > end_angle) {
 cout << "Error: Invalid input range. Range should be within -120
degree to 120 degree." << endl;
 (*is_data_available) = true;
 (*distance) = -1.0;
 (*laser_angle_in_degree) = -1.0;
 return;
 }

 clock_t timer_start, timer_end;
 timer_start = clock();

 laser->urg->start_measurement(Urg_driver::Distance, 1, 0);

 vector<long> data;
 long time_stamp = 0;
 if (!laser->urg->get_distance(data, &time_stamp)) {
 cout << "Error: There was an error when executing
Urg_driver::get_distance(): " << laser->urg->what() << endl;
 (*is_data_available) = true;
 (*distance) = -1.0;

174

 (*laser_angle_in_degree) = -1.0;
 laser->urg->close();
 return;
 }

 double degree_per_points = RobotLaser::URG_TOTAL_DEGREE * 1.0 /
RobotLaser::URG_NUM_OF_DATA_POINTS_RETURNED;
 double degree_counter = -120.0;
 double min_distance = 99999.0;
 int min_distance_data_point_index = -1;
 double min_distance_degree = 0.0;
 for (int i = 0; i < data.size(); i++) {
 if (degree_counter > start_angle && degree_counter < end_angle) {
 if (data[i] > 50 && data[i] < min_distance) {
 min_distance_data_point_index = i;
 min_distance_degree = degree_counter;
 min_distance = data[i];
 }
 }
 degree_counter += degree_per_points;
 }

 if (min_distance_data_point_index == -1) {
 cout << "Error: Cannot find the closest distance." << endl;
 (*is_data_available) = true;
 (*distance) = -1.0;
 (*laser_angle_in_degree) = -1.0;
 return;
 }

 if (laser->is_debug) {
 // cout << "Found the closest distance: " << min_distance << " at " <<
min_distance_degree
 // << " degree with data point index [" <<
min_distance_data_point_index << "]." << endl;
 timer_end = clock();
 // cout << "It takes " << RobotUtil::get_diff_in_ms(timer_start,
timer_end) << " ms for laser measurement only." << endl;
 }

 (*is_data_available) = true;
 (*distance) = min_distance;
 (*laser_angle_in_degree) = min_distance_degree;
}

double RobotLaser::get_distance_on_thread(int start_angle, int end_angle, double
*laser_angle_in_degree) {
 // If the laser data is available
 if (is_data_available) {
 is_data_available = false;
 is_started = false;
 current_thread->join();

 if (_distance > 0 && _laser_angle_in_degree > 0) {
 if (USE_KALMAN_FILTER) {
 measurement(0) = _distance;
 measurement(1) = _laser_angle_in_degree;
 kalman_filter->correct(measurement);

175

 if (is_debug) {
 // cout << "Real Found, Correct KF: " << _distance << ", " <<
_laser_angle_in_degree << endl;
 }
 }

 (*output_real) << RobotUtil::get_current_time_in_ms() << " "
<< _distance << endl;
 (*output_real_angle) << RobotUtil::get_current_time_in_ms() <<
" " << _laser_angle_in_degree << endl;

 (*laser_angle_in_degree) = _laser_angle_in_degree;
 return _distance;
 }
 else {
 if (USE_KALMAN_FILTER) {
 cv::Mat prediction = kalman_filter->predict();

 if (is_debug) {
 // cout << "Real Not Found, Use Predicted: " <<
prediction.at<float>(0) << ", " << prediction.at<float>(1) << endl;
 }

 (*output_predicted) << RobotUtil::get_current_time_in_ms() << " "
<< prediction.at<float>(0) << endl;
 (*output_predicted_angle) << RobotUtil::get_current_time_in_ms()
<< " " << prediction.at<float>(1) << endl;

 (*laser_angle_in_degree) = prediction.at<float>(1);
 return prediction.at<float>(0);
 }
 else {
 (*laser_angle_in_degree) = _laser_angle_in_degree;
 return _distance;
 }
 }

 return _distance;
 }
 // If the laser data is not available
 else {
 // If the thread of getting the data is not started
 if (false == is_started) {
 current_thread = new std::thread(&get_distance_raw, this,
start_angle, end_angle, &is_data_available, &_distance, &_laser_angle_in_degree);
 is_started = true;
 }

 cv::Mat prediction = kalman_filter->predict();
 (*output_predicted) << RobotUtil::get_current_time_in_ms() << " " <<
prediction.at<float>(0) << endl;
 (*output_predicted_angle) << RobotUtil::get_current_time_in_ms() <<
" " << prediction.at<float>(1) << endl;
 // cout << "Predicted" << endl;

 if (is_debug) {

176

 // cout << "Predicted: " << prediction.at<float>(0) << ", " <<
prediction.at<float>(1) << endl;
 }

 (*laser_angle_in_degree) = prediction.at<float>(1);
 return prediction.at<float>(0);
 }
}

10.2.7 Robot_bp.h

#ifndef ROBOT_BP_H
#define ROBOT_BP_H

#include <iostream>
using namespace std;

class RobotBP {
private:
 int in_num;
 int mid_num;
 int out_num;

 double **w;
 double **v;
 double *output;
public:
 RobotBP(int in_num, int mid_num, int out_num);
 void predict(double distance, double imageX);
 double* get_output();
};
#endif

10.2.8 Robot_bp.cpp

#include "robot_bp.h"

RobotBP::RobotBP(int _in_num, int _mid_num, int _out_num) {
 in_num = _in_num;
 mid_num = _mid_num;
 out_num = _out_num;
}

double* RobotBP::get_output() {
 return output;
}

void RobotBP::predict(double distance, double imageX) {
 double x[2]; //input layers
 double H[100]; //hidden layers

 //data pre-processing
 //too close: 0-200; close: 200-400; center: 400-800;
far: 800-1200; too far: 1200-5000

177

 if (distance <= 200 && distance >= 0)
 x[0] = 4;
 else if (distance <= 400 && distance > 200)
 x[0] = 3;
 else if (distance <= 800 && distance > 400)
 x[0] = 2;
 else if (distance <= 1200 && distance > 800)
 x[0] = 1;
 else if (distance <= 5000 && distance > 1000)
 x[0] = 0;

 //too left: 0-140; left: 140-220; center: 220-420; right: 420-500; too
right: 500-640
 if (imageX <= 140 && imageX >= 0)
 x[1] = 0;
 else if (imageX <= 220 && imageX > 140)
 x[1] = 1;
 else if (imageX <= 420 && imageX > 220)
 x[1] = 2;
 else if (imageX <= 500 && imageX > 420)
 x[1] = 3;
 else if (imageX <= 640 && imageX > 500)
 x[1] = 4;

 //display status
 cout << "distance=" << x[0] << " " << "image location=" << x[1] << "\n";

 // calculate the outputs of the hidden units
 for (int i = 0; i < 100; i++)
 {
 double sum = 0;
 for (int j = 0; j < 2; j++)
 {
 sum = sum + x[j] * w[j][i];
 }
 H[i] = 1 / (1 + exp(-sum));
 }

 //caculate the outputs of the output layer
 for (int i = 0; i < 10; i++)
 {
 double sum = 0;
 for (int j = 0; j < 100; j++)
 {
 sum = sum + H[j] * v[j][i];
 }
 output[i] = sum;
 cout << "number " << i << " is " << output[i] << endl;
 }
}

	LIST OF TABLES
	LIST OF FIGURES
	EXECUTIVE SUMMARY
	ACKNOWLEDGMENTS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Review of State of the Art
	1.3 Objectives

	2 PROCEDURE
	2.1 Task Set 1. Feasibility Study of the SMFe-BRT
	2.1.1 Task 1.1 Review of Literature and Practices
	2.1.2 Task 1.2 Select Test Corridors and Gather Data
	2.1.3 Task 1.3 Develop and Calibrate Simulation Model(s)
	2.1.4 Task 1.4 Analyze Scenarios
	2.1.5 Task 1.5 Evaluate Feasibility

	2.2 Task Set 2. Design an SMFe-bus to Provide Comparable Service to the Cobb County BRT Bus
	2.2.1 Task 2.1 Document State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion and Steering Systems
	2.2.2 Task 2.2 Determine Vehicle and Service Specifications Proposed for Cobb County’s BRT
	2.2.3 Task 2.3 Develop Laboratory Prototype of SMFe-bus Propulsion and Steering System
	2.2.4 Task 2.4 Carry Out Tests and Improvements of SMFe-bus Prototype
	2.2.5 Task 2.5 Determine Design Specifications for an SMFe-bus Propulsion System that Can Provide Service Matching that Proposed for the Cobb County BRT
	2.2.6 Task 2.6 Assess Impact of a Fully Electric Propulsion System on Operations and Cost

	2.3 Task Set 3. Develop the Hardware and Software Needed to Demonstrate the Concept of Virtual Coupling (Module-following) for Two Prototype SMFe-bus Modules
	2.3.1 Task 3.1 Review Literature and Practices
	2.3.2 Task 3.2 Develop Computer Vision Algorithms for Object Recognition
	2.3.3 Task 3.3 Develop the Communication Software for the Low-level Vehicle Control System
	2.3.4 Task 3.4 Develop Machine Learning Algorithms for Modular Tracking
	2.3.5 Task 3.5 Field Test and Improvement

	3 TASK SET 2: Design and Prototyping of an SMFe-bus
	3.1 State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion and Steering Systems
	3.2 Vehicle and Service Specifications Proposed for Cobb County’s BRT (as an example)
	3.3 Lab Prototype of SMFe-bus Vehicle
	3.3.1 Hub Motors and Motor Controllers
	3.3.2 Batteries
	3.3.3 Chassis
	3.3.4 Radio Control System
	3.3.5 Low-level Computer (RPi) and Electronics Board
	3.3.6 Steering Method/System
	3.3.7 Braking Method/System
	3.3.8 Tests and Improvements of SMFe-bus Prototype

	3.4 Design Specifications for an SMFe-bus Propulsion System that Can Provide Service Matching That Proposed for the Cobb County BRT
	3.5 Impact of a Fully Electric Propulsion System on Operations and Cost

	4 TASK SET 3: Development and Demonstration of Module-following Control
	4.1 Review of Literature and Practices
	4.2 Develop Computer Vision Algorithms for Object Recognition
	4.3 Develop the Communication Software for the Low-level Vehicle Control System
	4.4 Develop Machine Learning Algorithms for Modular Tracking
	4.5 Field Test and Improvement

	5 TASK SET 1: Feasibility (Cost–Benefit) Study of the SMFe-BRT Concept
	5.1  Motivation
	5.2 Objectives and Overview
	5.2.1 Cobb Parkway Corridor
	5.2.2 GA 400 Corridor

	5.3 Review of Literature
	5.3.1 Introduction
	5.3.2 Future Ridership Prediction
	5.3.2.1 Commuting Data in Atlanta [87]
	5.3.2.2 BRT Ridership Study [88]
	5.3.2.3 Ridership Responsiveness [89]
	5.3.2.4 Analysis of Vehicle and Person Throughput [90]

	5.3.3 Emission Calculations
	5.3.3.1 Public Transit Fuel Type [91]
	5.3.3.2 Automotive Emissions [92]

	5.3.4 Analytic Hierarchy Process in Practice
	5.3.4.1 The Case of Cracow, Poland [97]
	5.3.4.2 The Case of Korea [98]
	5.3.4.3 The Case of Lithuania [99]
	5.3.4.4 The Case of Singapore [100]

	5.3.5 Application of Analytic Hierarchy Process
	5.3.5.1 Weight Assignments by Experts [101]

	5.4 Methodology
	5.4.1 Microsimulation – Vissim Model Parameters
	5.4.1.1 Desired Speed Decisions
	5.4.1.2 Driving Behaviors
	5.4.1.3 Vehicle Compositions
	5.4.1.4 Signal Controllers
	5.4.1.5 Simulation Characteristics

	5.4.2 Vissim Model Development: Existing Conditions
	5.4.2.1 Vehicle Volume Inputs
	5.4.2.2 Existing Public Transit: CobbLinc

	5.4.3 Vissim Model Development: Future Conditions
	5.4.3.1 Dedicated Bus Lanes
	5.4.3.2 Vehicle Volumes Prediction
	5.4.3.3 Ridership Forecast
	5.4.3.4 Traffic Signal Timing
	5.4.3.5 Emission Estimation

	5.4.4 Multicriteria Evaluation
	5.4.4.1 Weights for Decision Criteria
	5.4.4.2 Analytic Hierarchy Model

	5.4.5 Finances
	5.4.5.1 Capital Cost Estimate [106]
	5.4.5.2 Operation and Maintenance Cost
	5.4.5.3 Revenues

	6 FINDINGS/RESULTS
	6.1 Findings from Task 2
	6.2 Findings from Task 3
	6.3 Findings from Task 1
	6.3.1 Cobb Parkway Corridor Results
	6.3.1.1 Network Performance
	6.3.1.2 Evaluation based on Multiple Criteria

	6.3.2 GA 400 Corridor Results
	6.3.2.1 Network Performance

	7 CONCLUSIONS
	8 RECOMMENDATIONS
	9 REFERENCES
	10 APPENDICES
	10.1 Appendix A—Low-level Python Programs
	10.1.1 Raspberry Pi Programs – Summary
	10.1.2 Lead_mod_t9.py
	10.1.3 lmsc_v3_27.py
	10.1.4 TCP_client_v1_24.py

	10.2 Appendix B—High-Level C++ Program
	10.2.1 Summary
	10.2.1.1 Main.cpp
	10.2.1.2 Robot_vision.cpp and robot_vision.h
	10.2.1.3 Robot_laser.cpp and robot_laser.h
	10.2.1.4 Robot_bp.cpp and robot_bp.h

	10.2.2 Main.cpp
	10.2.3 Robot_vision.h
	10.2.4 Robot_vision.cpp
	10.2.5 Robot_laser.h
	10.2.6 Robot_laser.cpp
	10.2.7 Robot_bp.h
	10.2.8 Robot_bp.cpp

Accessibility Report

		Filename:

		FHWA-GA-RP-16-13_20190619_SM.pdf

		Report created by:

		

		Organization:

		

[Enter personal and organization information through the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 0

		Passed: 28

		Failed: 2

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Passed		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Passed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Passed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top

