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EXECUTIVE SUMMARY 

In the Atlanta metropolitan area, one of the fastest growing regions in the United States, 

transportation ranks as the top concern of businesses and residents, while congestion relief has been 

the top priority when allocating transportation funding. The area currently suffers from regularly 

jammed highways and less than highly satisfactory public transit. One initiative to increase transit 

ridership is bus rapid transit (BRT), such as that proposed by Cobb County at a cost of $500 million 

(or almost $20 million per service mile). While BRT has many benefits and has been implemented 

worldwide, this research project seeks to improve upon the basic model by means of a novel vehicle 

concept called the Slim Modular Flexible Electric Bus (SMFe-bus). The key features of this vehicle 

are: (1) narrower width (25–50% slimmer than a regular bus), requiring less right-of-way; (2) a 

“lead” module with a driver cab, and a few driverless “follower” modules/cars trailing behind it; 

(3) follower modules that can be easily attached and detached from the preceding module by way 

of “virtual coupling” to meet varying passenger demand by time of day with optimized operations; 

and (4) given the smaller size of the modules, each are self-propelled by in-wheel electric motors, 

which will allow the modules to better negotiate turns while being more friendly to the environment 

than fossil-fuel engines. The significance of this project is that it will lead to a system that costs 

less than conventional BRT (by reducing right-of-way and construction costs), while providing an 

equal or better level of service (LOS), and is more environmentally friendly. 

This initial phase of the planned multi-stage research project was aimed at achieving the 

following regarding the Slim Modular Flexible Electric Bus Rapid Transit (SMFe-BRT) concept 

and the SMFe-bus vehicle: 

1. Demonstrate a higher benefit-to-cost ratio for the SMFe-BRT approach compared to the 

existing BRT approach (using Cobb County’s BRT proposal and Metropolitan Atlanta 

Rapid Transit Authority’s [MARTA’s] GA 400 Transit Initiative’s BRT option as case 

studies), and determine infrastructure design and operational feature requirements. 
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2. Develop two-wheel-drive prototype lead and follower SMFe-bus modules with 3-hp 

motors and 150-Ah battery pack, capable of speeds greater than 15 mph.  

3. Demonstrate straight-line following by the two-module prototype SMFe-bus at 15 mph 

within an 8-ft-wide path, and also proper tracking of 90-degree cornering at 4 mph within 

the swept path of a 40-ft city transit bus. 

After about two years of work, the following was accomplished: 

• For the feasibility study, the SMFe-BRT was evaluated against the traditional BRT by 

considering three major criteria: transport efficiency, environmental impact, and finances. 

The results indicate that the SMFe-BRT provides additional benefits compared to the 

traditional BRT for both freeway and arterial operations. 

• The developed power and propulsion system for each of the lead and follower module 

prototypes works properly when operated by a remote-control unit, for motor throttling 

(forward and reverse), steering, regenerative braking, and emergency braking. Outdoor 

tests indicate that the design of these prototypes yields performance that meets or exceeds 

the technical objectives (mainly straight-line speed and cornering speed) proposed for their 

power, propulsion, steering, and braking systems. 

• The developed leader–follower controller works properly in an indoor environment. To 

solve the measurement delay problem, a dual-Kalman-filter strategy and a multi-thread 

programming technique were integrated into the control scheme. The indoor experimental 

results using two autonomous vehicles validated the effectiveness and robustness of the 

proposed approach, and demonstrated module straight-line tracking up to 4 mph for time 

intervals of several seconds long. Meanwhile, the researchers observed some challenges in 

the outdoor tests. In particular, a regular laser sensor cannot obtain correct measurements 

in a bright outdoor environment. 
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Hence, this project fully accomplished two of its three objectives, while partially reaching 

the objective of demonstrating straight-line following by the two-module prototype SMFe-bus at 

15 mph, and also proper tracking of 90-degree cornering at 4 mph. Therefore, substantial progress 

has been made toward a better BRT system that costs less than conventional BRT (by reducing 

right-of-way and construction costs), while providing an equal or better level of service, and is 

more environmentally friendly. 
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1 INTRODUCTION 

1.1 Motivation 

The increasing demand for transportation versus the limited opportunities for increasing 

capacity within many metropolitan areas calls for more effective use of the available capacity [1]. 

According to the Bureau of Transportation Statistics, U.S. Department of Transportation, 79.6% of 

Georgia residents drove alone to work in 2013, while 10.3% participated in carpooling, and only 

2.1% chose public transit (considerably less than the national average of 5.2%) [2]. In the Atlanta 

metropolitan area (Metro Atlanta), a recent survey concluded that transportation ranks as the top 

concern of its businesses and residents [3], while congestion relief has been the top priority when 

allocating its transportation funding. The area currently suffers from regularly jammed highways 

and less than highly satisfactory public transit options, even though about 12% of Atlanta residents 

take transit regularly.  

One well-known way to mitigate highway congestion is to increase transit ridership by way 

of improved service, although this often requires an upgrade and/or expansion of existing transit 

infrastructure. Bus rapid transit (BRT) has been adopted around the world, including by Pittsburgh, 

Cleveland, Chicago, and New York City in the United States, Bogota in Colombia, Beijing in 

China, Oslo in Norway, and Mexico City in Mexico [4–12], as another option for improving transit 

service. It uses buses and dedicated lanes with limited stops to quickly transport passengers to their 

destinations while offering a certain level of flexibility to meet the demand. However, given the 

concerns about low transit ridership and increasing financial austerity in the U.S. public sector, 

BRT is often viewed as not being very cost-effective because of the required dedicated lanes, which 

often must be added to existing roadways. For example, establishing the BRT corridor proposed 

by Cobb County, Georgia, to service the 25.3-mile (one direction) stretch from a station near 

Kennesaw State University (KSU) in Kennesaw to the existing Metropolitan Atlanta Regional 

Transit Authority (MARTA) Arts Center Station has been budgeted at about $500 million [13], 
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which is equivalent to a cost of almost $20 million per service mile, although that is still lower than 

the cost associated with rail-based mass transit [14]. Furthermore, to meet increased passenger 

demand, a shorter bus headway is currently the typical system response, which quickly drives up 

the cost of operations. In nearby Gwinnett County, Georgia, interest in establishing BRT has 

recently been voiced by the county commission chairman, and while county residents are also more 

favorable toward transit now than any time during the past 45 years, there is still considerable 

concern about its cost to taxpayers versus the expected benefits [15]. 

In light of those considerations, the research team proposed a Slim Modular Flexible Electric 

Bus Rapid Transit (SMFe-BRT) system based on a novel vehicle concept. The key features of this 

Slim Modular Flexible Electric Bus (SMFe-bus) vehicle are: (1) narrower width (about 25% 

slimmer than a regular bus), requiring less right-of-way; (2) a “lead” module with a driver cab, and 

a few driverless “follower” modules trailing behind the lead module, to better negotiate sharp turns; 

(3) modules that are not physically coupled together so each follower module can be easily 

detached from or attached to the preceding module by way of “virtual coupling” to better meet 

varying passenger demand over the course of a day; and (4) given the semi-autonomous nature of 

the modules, each is self-propelled by in-wheel electric motors, which will allow the modules to 

more quickly change speed and direction while being more friendly to the environment than using 

fossil-fuel engines. 

1.2 Review of State of the Art  

The research team performed a review regarding recent and current research related to bus 

transportation, and the BRT concept in particular. The findings are summarized as follows: 

Wang and Li proposed using the spare capacity of the dedicated BRT lanes by high-

occupancy vehicles (with more than three passengers) during peak traffic hours in Hangzhou, 

China, to reduce traffic jams by better balancing usage of the available road resource [16]. 

Dodero et al. considered seven scenarios for Line 1 of the BRT system in Mexico City, Mexico, to 
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evaluate how operations and level of service (LOS) might improve as a result of operational 

modifications, investments in infrastructure, and/or technology acquisitions [11]. They found that 

better results were obtained from implementations requiring infrastructure investment than from 

those involving operational modifications. But the impact of each considered implementation was 

limited; only a few showed improvements on the analyzed indicators as large as 10%, testifying to 

the difficulty of improving BRT service. 

Recently, significant attention has been paid to developing systems that localize, monitor, 

and track buses in public transportation networks [17–19]. GPS and vehicle-to-vehicle 

communications are the main technological means to acquire and share such information. In 

particular, the locations, speeds, and directions of buses can be shared among the bus drivers, 

passengers, and the administrators of public transport systems. Through sharing that information 

and synchronizing public transportation schedules, the passengers’ transfer time could be shortened 

and the cost of public transport could be reduced.  

Another trend in recent bus transportation research is to develop electric or hybrid electric 

vehicles with low emission and low energy-consumption characteristics, and also improved 

steering control [20–22]. In addition, various transportation modes (including commuter rails, 

urban transit buses, electric trolley buses, and conventional diesel buses) have been compared in 

terms of energy use and CO2 emissions [23], and also cost-to-benefit ratio [24]. The results from 

these studies indicated that plug-in hybrid and electric city buses had the best potential to reduce 

energy consumption and emissions while yielding a lower cost-to-benefit ratio than conventional 

diesel buses. 

Even more recently, Alam et al. described research, including simple road tests, on the 

automatic control of platoons of freight trucks [25]. Their concept essentially uses a supervisory 

controller to adjust the speed set-points of each truck’s cruise-control system to maintain adequate 

vehicle separations; however, the drivers of each truck control their own vehicle’s steering. Related 

to this work, research has been ongoing at KSU regarding the control of mobile robots [26]. 
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In summary, this literature review did not uncover any recent or ongoing research that is 

identical to this proposed work. However, related research supports the BRT concept as an 

important and valuable alternative to other mass transit options in certain settings, with ongoing 

efforts to advance its components to enhance passenger experience and improve the technical, 

economic, and environmental performance of BRT systems [27]. Furthermore, prior research 

indicates that more-electric propulsion systems are the best way to reduce fossil-fuel consumption 

and harmful emissions. 

1.3 Objectives 

This initial phase of the planned multi-stage research project is aimed at achieving the 

following objectives regarding the Slim Modular Flexible Electric Bus Rapid Transit concept and 

the Slim Modular Flexible Electric Bus vehicle: 

1. Demonstrate a higher benefit-to-cost ratio for the SMFe-BRT approach compared to the 

existing BRT approach (using Cobb County’s BRT proposal and Metropolitan Atlanta 

Rapid Transit Authority’s [MARTA’s] GA 400 Transit Initiative’s BRT option as case 

studies), and determine infrastructure design and operational feature requirements. 

2. Develop two-wheel-drive prototype lead and follower SMFe-bus modules with 3-hp 

motors and 150-Ah battery pack, capable of speeds greater than 15 mph.  

3. Demonstrate straight-line following by the two-module prototype SMFe-bus at 15 mph 

within an 8-ft-wide path, and also proper tracking of 90-degree cornering at 4 mph within 

the swept path of a 40-ft city transit bus. 
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2 PROCEDURE 

To achieve the above-mentioned objectives, the project was carried out as three sets of tasks, 

detailed as follows.  

2.1 Task Set 1. Feasibility Study of the SMFe-BRT 

2.1.1 Task 1.1 Review of Literature and Practices 

The literature and practices related to the scope of this task will be reviewed and documented.  

2.1.2 Task 1.2 Select Test Corridors and Gather Data 

Several candidate corridors will be considered. The selection of the final study corridor will 

depend on data availability and practical considerations of SMFe-BRT. 

2.1.3 Task 1.3 Develop and Calibrate Simulation Model(s) 

Simulation models will be built for the existing (base) condition. Data necessary for 

calibrating the models will be gathered. Depending on data availability, the researchers expect that 

certain data (e.g., traffic characteristics and roadway geometry) are required to be collected or 

verified in the field. This calibration process is to ensure the models replicate the existing condition, 

which will serve as a benchmark for evaluating any modified conditions through scenario analysis 

as discussed in the next subtask.  

2.1.4 Task 1.4 Analyze Scenarios 

By implementing the SMFe-BRT concept in a simulated environment, a number of scenarios 

will be considered and analyzed. The scenarios will consider the geometric requirements of the 

slim bodies of the vehicles (e.g., dedicated narrower lanes, turning radii, access requirements, etc.) 

and specific performance characteristics of SMFe-BRT (e.g., demand-responsiveness and signal 

priority). 
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2.1.5 Task 1.5 Evaluate Feasibility 

The feasibility of SMFe-BRT will be evaluated in a broader context, including its interactions 

with other vehicles in the traffic stream, the number of stops and delays, fuel consumption, emission 

reduction, energy saving, and life cycle cost. 

2.2 Task Set 2. Design an SMFe-bus to Provide Comparable Service to the Cobb County 
BRT Bus 

2.2.1 Task 2.1 Document State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion 
and Steering Systems 

The literature and practices related to (hybrid) electric vehicle, i.e., (H)EV, propulsion and 

steering will be reviewed and documented to guide the project forward.  

2.2.2 Task 2.2 Determine Vehicle and Service Specifications Proposed for Cobb County’s BRT 

The vehicle and service specifications proposed for Cobb County’s BRT will be identified 

and documented. This includes parameters such as bus dimensions and capacity, bus turning radius, 

service route length, and peak headway. The SMFe-bus will be designed to match or exceed those 

identified specifications. 

2.2.3 Task 2.3 Develop Laboratory Prototype of SMFe-bus Propulsion and Steering System 

The procedure for developing the lab prototype for the propulsion and steering system will 

be as follows: 

• Select and procure in-wheel motors suitable for a lab prototype of an SMFe-bus with two-

wheel-drive lead and follower modules.  

• Select and procure batteries and controllers compatible with the chosen in-wheel motors. 

• Select and implement the steering method/system best-suited to the “virtual coupling” 

module-following requirement. 
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• Design and construct a simple chassis for this lab prototype based on the selected motors, 

batteries, controllers, and steering system. Develop the propulsion control system and the 

interface between the high-level (module-following) computer and the vehicle propulsion 

control system.  

• Integrate the procured motors, batteries, controllers, and steering system into the lab 

prototype’s chassis. 

2.2.4 Task 2.4 Carry Out Tests and Improvements of SMFe-bus Prototype 

As the procured components are received, they will be tested independently to ascertain that 

they are fully functional and meet the requirements. Any observed deficiencies will be corrected. 

Then the integrated system will be tested to ensure its functionality both before and after it is 

integrated into the lab prototype’s chassis. 

2.2.5 Task 2.5 Determine Design Specifications for an SMFe-bus Propulsion System that Can 
Provide Service Matching that Proposed for the Cobb County BRT 

Design specifications will be developed for an SMFe-bus propulsion system that can provide 

service matching that proposed for the Cobb County BRT. The design and specifications will take 

into account the lessons learned from the lab prototype’s design and test results. 

2.2.6 Task 2.6 Assess Impact of a Fully Electric Propulsion System on Operations and Cost 

Once the design for the SMFe-bus propulsion system has been specified, the researchers will 

estimate the cost of a fully electric bus and compare that to the costs of similar-capacity fossil-fuel 

buses and hybrid-electric buses. They will also study how the sizing of the SMFe-bus module’s 

battery pack affects the type of battery-charging infrastructure required and how the time needed 

for battery charging affects service operations. This will lead to recommendations on how to 

balance battery pack sizing versus needed battery-charging infrastructure, and operational 

performance and associated costs. 
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2.3 Task Set 3. Develop the Hardware and Software Needed to Demonstrate the Concept 
of Virtual Coupling (Module-following) for Two Prototype SMFe-bus Modules 

2.3.1 Task 3.1 Review Literature and Practices 

The research team will thoroughly review papers related to vehicle tracking, robot tracking, 

and related technologies. The advantages and disadvantages of various techniques and approaches 

proposed in the literature will be identified. Meanwhile, practices and activities related to vehicle 

and/or robot tracking, which have been implemented by other researchers, will be reviewed. 

2.3.2 Task 3.2 Develop Computer Vision Algorithms for Object Recognition 

The researchers will develop efficient computer vision algorithms to recognize objects 

(vehicles) robustly and reliably. The developed algorithm can visually recognize a moving object 

at a desired speed. The target object may move straightly or turn with a specific angle. 

2.3.3 Task 3.3 Develop the Communication Software for the Low-level Vehicle Control System 

The software will be developed to allow communication between the high-level vehicle 

tracking system and the low-level motion control system. The researchers will establish the 

communication prototypes, design the communication modes, and determine the communication 

content.  

2.3.4 Task 3.4 Develop Machine Learning Algorithms for Modular Tracking  

A machine learning algorithm will be developed to determine optimal motion commands for 

the vehicles (modular) through fusing the visual information extracted from the vision subsystem 

and distance information measured by the sonar/laser sensors. After enormous offline training, the 

vehicles are expected to autonomously learn correct tracking actions in various situations or 

environments. 
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2.3.5 Task 3.5 Field Test and Improvement 

The above algorithms and the developed system will be first tested and validated in a 

laboratory environment. Once they are successful, some field tests will be carried on. The test 

results will be evaluated and used to improve the algorithms and software/hardware design. 

 

The work done and the results achieved are detailed in the following three chapters 

corresponding to the three task sets, although they are presented in the order of task set 2, 3, and 

then 1. This order is because task set 3 depended on the successful completion of task set 2, whereas 

the completion of task set 1 was independent of the others and served essentially as a justification 

for them.   
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3 TASK SET 2: Design and Prototyping of an SMFe-bus 

3.1 State-of-the-art Practices in (Hybrid) Electric Vehicle Propulsion and Steering Systems 

The literature and practices related to (hybrid) electric vehicle propulsion and steering were 

reviewed to guide the way forward on this project. 

Most of the world’s major bus manufacturers have (H)EVs in their product lineup. Some also 

sell battery electric vehicles (BEVs) or only sell BEVs; one example of the latter is Proterra (see 

Fig. 1a) [28], a U.S.-based company. With the ongoing trend of decreasing battery pack costs [29], 

BEVs appear to have the edge over (H)EVs due to their simpler powertrain design, especially for 

vehicles to be introduced 3–5 years from now or later. Hence, this project focused on a BEV, instead 

of an HEV. 

Presently, most BEVs for transit applications use a single electric motor to drive the two 

wheels attached to a single axle. However, Proterra has recently introduced a BEV with two electric 

motors to independently drive the two wheels attached to a single axle (see Fig. 1b) [30], which 

exploits the power density of electric motors and improves steering control of the bus (i.e., it allows 

for torque vectoring [31]). A two-speed gearbox interposed between the motor and its 

corresponding wheel is used in that bus to improve hill-climbing performance, but this is at the 

expense of increased space, weight, and cost. For the present project, there is not a hill-climbing 

performance objective to be satisfied, hence a gearbox is unnecessary; moreover, the SMFe-bus 

vehicle is slim and lateral space is a limiting factor. Thus, the researchers focused on hub (i.e., in-

wheel) motors where the motor is mounted within the hub of a wheel [32]. In-wheel motor  (see 

Fig. 2) advantages include the following: 

• No mechanical gearings from the motor shaft 

• A wide range of application, including conversions and hybridization 

• Concept electric cars, and light commercial vehicles 

• Electromechanical topology 
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• Independent distribution and variation of power (torque) to individual wheels 

• Front/rear wheel drive vectoring in all-wheel-drive (AWD) vehicles for better traction and 

road handling 

   

                                                  (a)                                               (b) 

FIGURE 1 

Proterra Bus (a) Catalyst BEV [28]; (b) DuoPower Axle Assembly [30] 

 

FIGURE 2 

An In-Wheel Motor’s Main Components [33] 

Manufacturers of hub (in-wheel) motors for EVs include Protean Electric [33], Elaphe [34], and 

Kelly Controls [35]. 

The 35-ft version of the Proterra Catalyst (Fig. 1a) can probably be modified in a relatively 

straightforward manner to serve as the lead module of the SMFe-bus, with the follower module 



 

13 

requiring somewhat more significant modifications (in particular, to provide it with module-

following capability). 

3.2 Vehicle and Service Specifications Proposed for Cobb County’s BRT (as an example) 

Vehicle and service specifications were identified and documented, including parameters 

such as bus dimensions and capacity, bus turning radius, service route length, and peak headway. 

Cobb County’s Department of Transportation has proposed implementing a BRT system, called 

Connect Cobb, which will comprise the following: 

• A corridor running from Kennesaw State to Midtown 

• A 25.3-mile route with 15 stops, shown in Fig. 3 

• Construction of expanded roads, as illustrated by Fig. 4 

This project was budgeted at about $500 million [13], which is equivalent to a cost of almost 

$20 million per service mile, although that is still lower than the cost associated with rail-based 

mass transit [14]. The SMFe-bus will be designed (see Section 2.2.5) to match or exceed the 

identified specifications of Cobb County’s arterial rapid transit (ART) bus, including those shown 

in Fig. 5. Note that ART is sometimes used in place of BRT to emphasize that the route runs through 

existing high-density, mixed-use arterial corridors. 
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FIGURE 3 

Proposed Connect Cobb ART Corridor Showing Traffic Configuration and Stations 
[Source: Cobb County DOT] 
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FIGURE 4 

Proposed Typical Section on US 41 / Cobb Parkway [Source: Cobb County DOT] 

ART Bus 
Specifications 

 SMFe-Bus 
Specifications 

Compressed Natural 
Gas or Diesel-
Electric Hybrid 

Fuel Type Battery Electric 

110 (60 Seated plus 
50 Standing) 

Capacity 105 (24+27+27+27 
seated, 4 modules, 9 

rows, with 1 driver or 
3 pax seated per row), 

or 
105 (33+36+36 

seated, 3 modules, 12 
rows, with 1 driver or 
3 pax seated per row) 

62 Length (ft) 27 to 36 
8.5 Width (ft) 6 to 6.25 
11 Height (ft) 10 
39 Turning 

Radius (ft) 
33.1 (for each 36’ 

long module) 
68000 Weight (lb) 21774 to 29032 

At station Fare 
Collection 

At station 

60 Max Speed 
(mph) 

60 

Both Sides Door 
Location 

One Side 

Follow
er 

Lead
 

Follow
er 

 
FIGURE 5 

Comparing Specifications of Cobb County’s ART to Proposed SMFe-BRT 
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3.3 Lab Prototype of SMFe-bus Vehicle 

A laboratory prototype of the SMFe-bus vehicle with two modules—a lead module and a 

follower module (see Fig. 6)— was designed and constructed as a proof-of-concept demonstrator. 

Their subsystems are essentially identical except that the follower module has sensors and a high-

level computer to enable it to track the lead module positioned and moving ahead of it. The design 

and construction processes included the following steps, and the details for each subsystem are 

presented in the following subsections. 

• Select and procure in-wheel motors suitable for lab prototype of an SMFe-bus with two-

wheel-drive lead and follower modules.  

• Select and procure batteries and controllers compatible with the chosen in-wheel motors. 

• Select and implement the steering method/system best suited to the “virtual coupling” 

module-following requirement. 

• Design and construct a simple chassis for this lab prototype based on the selected motors, 

batteries, controllers, and steering system. Develop the propulsion control system and the 

interface between the high-level (module-following) computer, and the vehicle propulsion 

control system.  

• Integrate the procured motors, batteries, controllers, and steering system into the lab 

prototype’s chassis. 
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FIGURE 6 

Lab Prototype of the SMFe-bus Vehicle with Two Modules: 
a Lead Module and a Follower Module 

3.3.1 Hub Motors and Motor Controllers 

To prove the above-described concept of the SMFe-BRT vehicle and determine needed 

adjustments to the proposed vehicle design, a ⅓-scale prototype was developed. For this prototype 

(with two ⅓-scale modules), it was estimated that each module would weigh about 250 kg (10 kg 

for floorboard, 30 kg for rectangular chassis, 120 kg for batteries, 70 kg for hub motors and wheels, 

20 kg for electronics and sensors). Furthermore, to attain linear speeds of at least 15 mph (24 km/h), 

the two hub motors per module were sized at 2 kW each. A few suppliers were considered, and the 
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research team decided that the motor and motor controller would be acquired from Kelly Controls, 

LLC. 

The selected motor controller (Kelly KLS7222H [36]) is a sinusoidal wave drive type 

controller that reduces the operation noise and the switching losses (by up to one-third). This motor 

controller uses high-power metal-oxide semiconductor field-effect transistors (MOSFETS), space 

vector pulse-width modulation (SVPWM), and field-oriented control (FOC) to achieve a peak 

efficiency of 99%. The controller drives the selected 48 V 2 kW brushless DC hub motor with 

10-inch tires (see Fig. 7) [37] with the help of Hall sensors, and is able to rotate it fast enough to 

achieve linear speeds of up to 57.1 km/h. A 48 V 100 Ah battery pack is to be used to supply the 

motors via the main contactor (with a precharge resistor across its contacts) and the motor 

controller. 

To test this prototype vehicle, it would need to be remotely controlled. This is addressed in 

Section 3.3.4. 

 

FIGURE 7 

The Selected 48 V 2 kW Brushless DC Hub Motor 
with 10-inch Tire Mounted on a Stand for Testing 
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3.3.2 Batteries 

One important consideration when selecting the motor and motor controller was their voltage 

rating. While a higher operating voltage would allow for reduced operating current, reduced wiring 

size, and increased operating time, it would also increase the weight and cost of the battery pack. 

Hence the 48 V was a reasonable compromise when considering all the above factors. Initially, the 

researchers chose the Trojan SCS150 (12 V) deep-cycle wet lead-acid battery to implement this 

pack, then for the second vehicle module they used the Duracell SL124MDC (12 V) deep-cycle 

wet lead-acid battery, which was found to be a better cost-performance alternative, although its 

capacity (20 hr) is 75 Ah instead of 100 Ah for the SCS150. 

3.3.3 Chassis 

To obtain a fairly lightweight yet sufficiently sturdy chassis for the prototype SMFe-bus 

vehicle, the researchers decided to construct it using aluminum as the main material. Then, to ease 

the design, reduce the machining requirements, and speed up the assembly process, they chose to 

use T-slotted aluminum extrusions. The chassis design factored in the requirements for the various 

subsystems, starting with the hub motors, and including an area for mounting/supporting the heavy 

battery pack and an area for placing the electronics (and also sensors for the follower module). Fig. 

8 shows a rendering of the designed chassis for the scaled prototype. 

 

FIGURE 8 

Rendering of the Designed Chassis for the Scaled Prototype 
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3.3.4 Radio Control System 

The prototype lead module’s propulsion system, which is controlled by remote means, 

consists of the above-mentioned hub motors and motor controllers, together with a Raspberry Pi 3 

computer, a digital-to-analog converter, and a radio-frequency (RF) remote control (RC) system. 

To emulate a driver’s operation of the lead module, the RC system is used to communicate 

the Throttle (Forward or Reverse), Brake, and Left or Right commands. The joysticks on the 

selected Turnigy 5X [38] RC’s transmitter are used to command these actions, which are then 

communicated to the RC receiver at a frequency of 2.4 GHz. A toggle switch on the RC transmitter 

can also be used to initiate emergency stopping (Brake) in case of a dangerous situation. The 

receiver’s channels output servo-type pulse-width modulated signals (with pulses ranging between 

1 and 2 ms in width) based on each transmitter joystick’s position, which are read by the module’s 

low-level Raspberry Pi 3 computer. Fig. 9 shows how the various components connect together to 

permit remote operation of the prototype vehicle’s lead module for testing purposes. 

 

 
FIGURE 9 

Connection Diagram for Motor Control Using RC System 

3.3.5 Low-level Computer (RPi) and Electronics Board 

The electronics board (see Fig. 10) of the lead and follower modules are the same, differing 

only in their firmware. First and foremost, the selected Raspberry Pi 3 computer [39] is powered 
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by a component that converts the 48 V from the pack of four 12 V batteries, connected in series, 

down to 5 V. Then, there is a Raspberry Pi Cobbler/connector board that provides a convenient 

breakout of the General Purpose Input Output (GPIO) pin selection of the Raspberry Pi. 

The signals output from four channels of the RC receiver are sent as inputs to the GPIO pins 

of the Raspberry Pi for processing. These channels represent the Forward or Reverse switch 

command, Throttle command, the Left or Right command, and the Brake command.  

Due to the Raspberry Pi 3 lacking analog outputs, an MCP4725 digital-analog converter 

(DAC) [40] was selected for producing the analog voltage needed by the motor controller. This 

DAC, with 12-bit resolution, can output a voltage between 0 and 6.5 V while the motor controller 

selected for the prototype vehicle requires a throttle input of 0 to 5 V. The DAC communicates 

with the Pi 3 using the I2C communication protocol. A Python script is run on the Pi 3 to read the 

input from the RC receiver and then write an I2C signal to the DAC; this script (see 

“lead_mod_t9.py” in Appendix A) runs continuously on the lead module during testing, while it is 

run on the follower module only while maneuvering it out of the lab and to the test site. Specifically, 

the joystick on the RC transmitter being all the way down produces 0 V of motor throttle and the 

joystick all the way up produces 5 V of motor throttle. Since one DAC is needed for each of the 

two hub motors, the bus address of one of the DACs was changed from the default value of (0×62) 

to (0×63). This allows different voltages, if needed, to be applied to the left and right motors.  
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FIGURE 10 

Connection Schematic for the Electronics Board 

For the follower module only, the purpose of the “lmsc_v3_27.py” program is to interface 

between the high-level controller (laptop) and this module’s subsystems that vary its speed and 

direction to achieve module following. A flowchart of this program is displayed as Fig. 11. When 

this program is executed, it first extends the braking actuator to release the brakes applied to the 

hub motor’s rotors. The program then centers the steering using the steering actuator. After this, 

transmission control protocol (TCP) communication is established with the high-level controller 

(laptop) that sends this program the values it needs for the hub motor speed (in RPM) and the 

steering wheel angle (in degrees, with right of straight-ahead having positive values and left of 

straight-ahead having negative values), and it obtains and initializes these values immediately.  
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FIGURE 11 

“lmsc_v3_27.py” Flowchart 

The motor speed thread is then set up. In this thread, the emergency brake trigger on the RF 

remote will be checked. If it is triggered, then the program will retract the braking actuator to apply 

the brake and will set the motor speed control to zero. If the emergency brake is not applied, then 

it will assign the desired values for the motor RPM that were received from the TCP 

communications earlier.  

The steering thread is then set up. In this thread, the current location of the steering actuator 

will be acquired. The desired location for the steering that is received from the high-performance 
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controller will be checked so that the minimum and maximum bounds are not passed. The steering 

actuator uses a pulse-width modulation (PWM) value so that the speed of the actuator can be varied 

as a function of the distance that the actuator must travel. This PWM value will be calculated in 

this thread and then sent to the actuator to control the steering.  

Although the initial TCP communication is started at the beginning of the program, there is 

still a thread making use of the TCP protocol for the remainder of the operation. The TCP 

communication thread is then set up. In this thread, the RPM of the motors will be checked, and 

the proportional–integral–derivative (PID) controller’s constants will be received. The desired 

RPM and angle for the motors and steering will then be received from the high-performance 

controller, and the angle will be immediately calculated to find the bit value that the analog-to-

digital converter (ADC) will read from the slide pot. 

After these three threads are set up, they will all be started at the same time.  

The program now enters an infinite loop that will constantly check for the thread flags to be 

triggered. If this flag is triggered, then all of the threads will be terminated. The voltage to the 

motors will be shut off, the PWM values to the steering actuator will be set to zero, the TCP 

communication will be closed, the emergency brake and actuator brakes will both be applied, and 

the GPIO pins will be deactivated. 

3.3.6 Steering Method/System 

The steering actuation system is based on the conventional go-kart steering system (see Fig. 

12 diagram). Calculations for this system were performed to find an equation that would relate the 

required stroke length of the steering actuator to the desired angle of the front (steering) wheels. 

What is shown in the figure is the actuator arm and where the value of angle θ is being 

obtained. The law of cosines is used since there are two known sides for the triangle that the actuator 

creates. Two unknowns are left (i.e., θ and the actuator length). The θ or the actuator length can be 

set up as functions of one another, producing a nonlinear output. This illustration also shows the 
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minimum and maximum values that the arm will be able to extend. Lastly, several values for the θ 

are calculated over the extension of the actuator length in order to find where the steering column 

will end. 

 
Actuator Length [LA]= 287mm to 419mm (+/- 2mm) 
Steering Actuator = 76.8mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LA

2 = 76.82 + 363.52 – 2*74.6*363.5*cos θ      Using the law of cosines 
 

θ = cos−1
𝐿𝐿𝐴𝐴2 − 138030
−55834

 

 

θmin = cos−1
2872 − 138030

−55834
= 4.5° 

 

θmax = cos−1
4192 − 138030

−55834
= 132.2° 

 

θstraight = cos−1
3502 − 138030

−55834
= 73.85° 

 

θadjusted = cos−1
𝐿𝐿𝐴𝐴2 − 138030
−55834

− 73.85° 
 
θadjusted will be zero when the wheels are straight, be positive when they are turned to the right, 
and negative when they are turned to the left.  

a = 76.8mm 

b = 363.5mm 

c = LA 

 
FIGURE 12 

Steering Actuation System Diagram 
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Fig. 13 shows a tidier version of the previous figure. The measurements were retaken for the 

calculations, so the constant values in the equation are slightly different; this is the equation used 

in the other calculations in Fig. 13.  

Actuator Length [LA]= 287mm to 419mm (+/- 2mm) 
Steering Actuator = 76.8mm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LA

2 = 77.52 + 3602 – 2*77.5*360*cos θ      Using the law of cosines 
 
LA

2 = 135606 – 55800*cos θ     
 
LA

2 - 135606 = -55800*cos θ     
 

θ = cos−1
𝐿𝐿𝐴𝐴2 − 135606
−55800

 

 
𝐿𝐿𝐴𝐴 = √135606− 55800cosθ 

a = 77.5mm 

b = 360mm 

c = LA 

FIGURE 13 

Derivation of Equation Relating Steering Wheel Angle and Steering Actuator Length 

Fig. 14 shows the length of the actuator that is being read into the Raspberry Pi via a 

proportionally equivalent slide potentiometer, which produces an output voltage that varies as the 

length of the actuator changes and moves/repositions the attached potentiometer tab along with it. 
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This figure first illustrates with a graph the change in the bit values read into the Raspberry Pi from 

the slide pot. The graph is of the actuator length versus the bit values read, using the minimum and 

maximum actuator lengths and respective bit values as the data points. An equation for the best-fit 

straight line through these points was found and then plugged into the equation presented in Fig. 

13. “DL” replaces the bit value variable “b” as it is the variable name used in the Python program. 

 

LA = Actuator Length  
b = Bit Value 
LA,min = 325.44mm 

LA,max = 396.88mm 

bmin = 1550 
bmax = 400 

 

𝑚𝑚 =
𝐿𝐿𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐿𝐿𝐴𝐴,𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚
=

325.44 − 396.88
1550 − 400

− .0621 

 
LA = -.0621*b + C   
 
C = LA + .0621*b = 325.44 + .0621*1550 = 421.7 
 
LA = -.0621*b + 421.7 
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FIGURE 14 

Derivation of Equation Relating Steering Actuator Length and Bit Value of ADC 
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3.3.7 Braking Method/System 

Braking of each module is done in two ways. The first is electronic or regenerative braking, 

which is carried out by the motor controllers as discussed in Section 3.3.1 above. But for safety 

(emergency stop) reasons, a mechanical disk brake system was also implemented on each module 

to more quickly slow down and possibly fully stop the rear wheels (with the hub motors). This 

system is detailed as follows. 

The disk brakes on the SMFe-bus slow down and stop the vehicle while in operation. For the 

lead module, this will be commanded by its RC system transmitter’s operator and implemented by 

the Raspberry Pi program for RC operation (see “lead_mod_t9.py” in Appendix A). For the 

follower module, this will be commanded in the event of an emergency situation by the Emergency 

Brake switch on its RC system transmitter, which the Raspberry Pi program for automatic following 

operation will interpret as discontinuing automatic following and fully applying the disk brakes.  

The hydraulic brakes are engaged when a linear actuator pulls a cable attached to the brake 

lever. The brake lever provides the leverage for a push rod to force fluid through the brake lines 

and into the calipers. The pressure inside each caliper forces a piston to exert force on the brake 

pads and create friction against the (spinning) rotor/disk. This friction is what slows and eventually 

stops the wheels. 

The main hardware components of the braking system consist of the following (see Fig. 10 

− Connection Schematic for the Electronics Board): 

1. Raspberry Pi 3 

2. Adafruit DRV8871 motor driver 

3. Zoom Industrial 4″ linear actuator with integrated Hall effect sensor 

4. 48–24 V DC/DC converter 

5. Hydraulic brake system 

a. Master cylinder with lever 
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b. Brake fluid lines 

c. Caliper, brake pads, and rotor 

As described, the brakes are applied when the 4″ actuator contracts. Conversely, the brakes 

are released when the actuator extends. This forward and reverse motion is controlled by altering 

the polarity of the voltage applied to the actuator using the DRV8871 motor driver. Moreover, the 

two logic inputs to the motor driver originate from the Raspberry Pi 3, which sends the signals to 

extend and retract, depending on the joystick position of an RC system transmitter (for the lead 

module), or if the Emergency Brake switch of an RC system transmitter has been activated (retract 

only, for both the lead and follower modules). 

The control program for each SMFe-bus module is written in Python (see Appendix), which 

includes the braking routine, and is run on the Raspberry Pi 3 low-level controller. When the 

program begins its execution, the linear actuator is extended to its maximum position, which 

releases the brakes completely. In the main routine of the Raspberry Pi program for RC operation 

(lead module), the desired position and the actual position of the actuator are compared. That is, 

the desired position of the lead module RC system’s joystick is compared with the actual position 

of the actuator; this actual position is determined by either incrementing or decrementing a counter 

based on the pulses from the Hall sensor inside the actuator. The more the joystick is pulled back, 

the more the actuator contracts, and the same is true for the opposite direction.  

The actuator has a software-set retraction limit to stop the actuator from breaking the cable 

that tethers its tip to the lever on the brake’s master cylinder. 

3.3.8 Tests and Improvements of SMFe-bus Prototype 

As the procured components were received, they were tested independently to ascertain that 

they were fully functional and met their requirements. Then, each of the above-mentioned 

subsystems was tested independently to ensure its functionality both before and after it was 

integrated into the lab prototype’s chassis. Finally, the complete and integrated power and 
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propulsion system, operated by a remote-control system working properly, was tested first indoors 

and then outdoors to assess motor throttling (forward and reverse), steering, regenerative braking, 

and emergency braking. Each problem detected during the tests was corrected. This resulted in 

module prototypes that yield performance that meets or exceeds the technical objectives (mainly 

straight-line speed and cornering speed) proposed for their power, propulsion, steering, and braking 

systems. 

3.4 Design Specifications for an SMFe-bus Propulsion System that Can Provide Service 
Matching That Proposed for the Cobb County BRT 

Design specifications were developed for an SMFe-bus propulsion system that can provide 

service matching that proposed for the Cobb County BRT. The design and specifications took into 

account the lessons learned from the lab prototype’s design and test results. 

Calculations were performed to determine the maximum power requirement for propelling 

each SMFe-bus module, assuming a curb weight of 29,032 lb for a 36-ft-long 36-passenger 

follower module (the corresponding lead module will have room for 33 passengers, 1 driver, and 

1 wheelchair-bound passenger), in order to properly specify the electric motors. It was further 

assumed that the vehicle will need to accelerate from 0 to 30 mph in 9 seconds, and also reach a 

maximum speed of 60 mph. Hence, the motors need to be about either 176 hp (132 kW) for two 

hub motors or 88 hp (66 kW) for four hub motors. After estimating the motors’ power rating, a 

current-versus-time profile was roughed out, assuming a 370 V battery pack and that the distance 

between each of the 14 total stops along the planned Cobb Parkway BRT corridor [41] was the 

same, which implied that 145 Ah of charge was needed for a one-way trip, as depicted in Fig. 15. 

Selecting a 600 Ah capacity battery pack (equivalent to 222 kWh) would allow the vehicle to make 

two round trips without recharging, although this neglects the energy needed for heating/cooling 

and other electrical/electronic systems.  
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FIGURE 15 

Different Power and Charge Requirements as a Function of Bus Module Length 

3.5 Impact of a Fully Electric Propulsion System on Operations and Cost 

Once the design for the SMFe-bus propulsion system was specified, the research team could 

estimate the cost of a fully electric bus and compare that to the costs of similar-capacity fossil-fuel 

buses and hybrid electric buses. The researchers could also study how the sizing of the SMFe-bus 

module’s battery pack affects the type of battery-charging infrastructure required and how the time 

needed for battery charging affects service operations. This finding then leads to recommendations 

on how to balance battery pack sizing versus needed battery-charging infrastructure, and 

operational performance and associated costs. 

The SMFe-bus vehicle will be all-electric as compared to the compressed natural gas or 

diesel-electric hybrid BRT vehicle planned for the Connect Cobb project; hence, it will be more 

environmentally friendly. 

As noted in Section 3.4, a 600 Ah capacity battery pack (equivalent to 222 kWh for a 375 V 

power and propulsion voltage) would allow the vehicle to make two round trips without recharging, 

although this ignores the energy needed for heating/cooling and other electrical/electronic systems. 



 

32 

During the day, the vehicle’s modules can receive a quick charge at the terminating stations, which 

should allow it to be able to run continuously throughout the day without downtime for a complete 

recharging. Of course, if it is a follower module that is temporarily taken out of service during a 

low-demand period, it can be recharged during that time. At night, the vehicles will be connected 

to the charging stations to charge the batteries to their full capacities. There are three different types 

of chargers that can be used that have different ratings [42], as shown in Fig. 16. Level 1 and 2 

chargers use single-phase or 3-phase AC supply and can deliver power from 2 to 20 kW. Level 3 

chargers require a 3-phase AC supply and can deliver power from 20 to 240 kW, which permits 

fast charging.  

 

 

 

 FIGURE 16 

Charging Times for Different Levels of Charging 

The researchers considered how these calculations compare to the recently published 

specifications for a commercially available, fully electric transit bus. Table 1 compares several key 

features, which indicate that the calculations are quite reasonable. 

TABLE 1 
Comparison of Several Key Features of Proposed SMFe-bus 

to the Proterra FC Bus  

 SMFe-bus Proterra FC 

Total energy (kWh) 222 94 

Top speed (mph) 60 65 

Acceleration 0–20 mph (s) 6 4.5 

Motors (kW) 2×132 2×190 

Curb weight (lb) 29,032 28,925 

Total energy (kWh) 222 94 

Gearbox None 2-speed auto-shift 
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4 TASK SET 3: Development and Demonstration of Module-
following Control 

4.1 Review of Literature and Practices 

Autonomous vehicle tracking has attracted significant attention in the intelligent 

transportation community. Most research activities have focused on developing a model-based 

leader–follower controller so that a follower vehicle can track its predecessor autonomously and 

reliably. For example, Loria et al. proposed a leader–follower nonlinear controller when the 

vehicles followed a straight path. Specifically, since the system to be controlled is not controllable 

(in the control theoretic sense of this word), they developed a controller that has a property of 

persistence of excitation to make the whole system stable [43]. Cruz-Morales et al. presented a 

leader–follower formation strategy for nonholonomic mobile robots, where the discrete kinematics 

models of the robots were derived, and the relative distance/angle model between the robots was 

developed. These models were employed to develop a control law for autonomous tracking [44]. 

Since the vehicle models are usually nonlinear, a number of researchers employed nonlinear 

control approaches to design a control law [45–50]. Paliotta and Pettersen [45] developed a 

distributed control law for leader–follower synchronization with disturbance rejection. The 

feedback linearization technique was utilized to derive the control law. Chen et al. [46] considered 

the measurement delays in a leader–follower formation control problem for nonholonomic 

vehicles. In particular, they extended the concept of input-to-state stability and integrated a Smith 

predictor with nonlinear small-gain assignment. Mori and Namerikawa [47] proposed a formation 

control algorithm based on a consensus algorithm and a leader–follower structure for a multi-UAV 

(unmanned aerial vehicle) system. They developed the control algorithm based on the Lyapunov 

stability theorem and linear matrix inequality (LMI) conditions when the communication between 

two vehicles was intermittent. 
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In a leader–follower control structure, since the trajectory of the leader vehicle can be 

naturally regarded as the predicted reference trajectory that the follower vehicle needs to follow, 

the model predictive control (MPC) technique was employed by many researchers to implement 

autonomous vehicle tracking [51–55]. For example, Maeda and Konaka presented an MPC 

controller to predict the predecessor’s trajectory for a two-wheeled vehicle [51]. Dunbar and 

Caveney developed a distributed receding horizon controller for a vehicle platoon, and derived the 

sufficient conditions of string stability [53]. 

The techniques of sliding mode control, adaptive control and robust control are also very 

popular in designing a leader–follower controller [56–63]. For instance, Koroglu and Falcone 

proposed a controller for a platoon of autonomous homogeneous vehicles. They studied the string 

stability problem and derived the sufficient LMI conditions [56]. Chen et al. developed a sliding 

mode controller for distributed formation control of multiple mobile robots [58]. They also 

employed the backstepping method to study the formation control strategy. In addition, Chen, 

Torre, and Dong developed a distributed exponentially tracking controller for multiple wheeled 

mobile robots using adaptive control [60]. 

All of the above research is related to model-based control. In these research projects, the 

mathematical model of vehicle kinematics or dynamics was derived and then a controller was 

designed based on this model. 

Only a few researchers have tried the model-free control methods thus far [64–68]. For 

example, Hung et al. employed the reinforcement learning algorithm to implement a 

leader–follower controller for fixed-wing UAVs in a stochastic environment [64], where Dyna-Q 

with a variable learning rate was employed by the agents to learn a control policy. Peng et al. 

proposed adaptive dynamic surface control for autonomous surface vehicles using neural networks 

[65]. Their developed approach was compared to a model-based control method. Rinaldi, Chiesa, 

and Quagliotti compared linear–quadratic regulator (LQR) control to neural network control in a 

leader–follower formation control task for quadrotor UAVs [66].  
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Leader–follower tracking control is usually appropriate to a vehicle team including two or 

three vehicles. If there are more than three vehicles, then the vehicles form a platoon. In a platoon 

of vehicles, leader–follower control is still at the core of the control strategy, but an additional issue 

called “string stability” must be considered, which means that the effect of disturbances will not be 

amplified throughout the string as the vehicle index increases. Peters and Mason proposed a 

leader–follower control strategy for a platoon of vehicles with non-homogeneous weights [69]. To 

guarantee the string stability, each follower vehicle receives not only the state of its immediate 

predecessor but also the state of the leader. Similar approaches were employed in other studies to 

implement coordinated control of a platoon of vehicles with string stability [70–75]. 

Clearly, controller design could be simplified if the vehicles can communicate with each 

other through a wired or wireless network and acquire the exact states of its neighbors and/or the 

leader in the platoon. As a result, it has been popular to employ explicit communication in vehicle 

tracking control to improve the system’s reliability and stability [76–79]. Ampountolas and Kring 

proposed a bus-to-bus communication strategy to acquire the current position and speed of the 

leader bus to improve cooperation between the buses [76]. Hu and Lemmon proposed a distributed 

switching control approach to achieve almost sure safety for leader–follower vehicle control. The 

vehicles can exchange their information over a wireless radio communication network to attain and 

maintain formations [78].  

While explicit communications among vehicles simplify the controller design, the inevitable 

communication delays and disturbances could make the system unstable. 

It is surprising that few researchers have employed computer vision in autonomous vehicle 

tracking; however, this is partly due to unreliable detections and slow response speed of a computer 

vision subsystem. Karras, Kyriakopoulos, and Karavas proposed a leader–follower scheme using 

vision-based implicit communications for underwater vehicles [80]. The relative positions between 

the vehicles were estimated using a computer vision algorithm, and a motion tracking controller 

was implemented for robust leader–follower tracking. Cruz-Morales et al. developed a 
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leader–follower formation control strategy for nonholonomic mobile robots [44]. In particular, a 

Microsoft Kinect™ camera was employed to acquire the relative distance and angle between the 

robots, and a motion control law was derived to utilize the acquired visual information.  

Here is a summary of existing research in autonomous vehicle tracking: 

• Most researchers have focused on developing a model-based controller. Few investigators 

have paid attention to model-free control strategies. 

• Explicit communication approaches have been utilized extensively to simplify the 

controller design. 

• Computer vision is seldom applied to autonomous vehicle tracking even though the camera 

cost has been reduced dramatically and the computer vision algorithms have been 

improved significantly in recent years. 

The researchers in this project contend that a model-free control approach has some 

advantages over a model-based control approach. Due to the complexity of a vehicle’s kinematics 

and dynamics, it is challenging to derive its mathematical model accurately since it is quite 

nonlinear. Specifically, because the math model matches the real kinematics and dynamics of the 

vehicle only in a very small work zone, using an approximate linearized model often makes the 

control law fail when the vehicle is not working in the desired work zone. The researchers also 

argue that the explicit communication approach introduces additional controller stability issues due 

to unexpected communication delays and disturbances, even though it simplifies the controller 

design. Instead, here they propose employing some local sensing approaches (i.e., distance 

measurements and object detections) to improve the reliability of the vehicle tracking system. 

Furthermore, in view of the significant progress in computer vision research in the past years, they 

also propose integrating computer vision with other sensing approaches for vehicle tracking 

because they believe the vision subsystem can provide richer environmental information than other 

sensors. 
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4.2 Develop Computer Vision Algorithms for Object Recognition 

In this project, the position of the leader vehicle is detected visually using a ZED™ camera 

and the SSD (Single Shot MultiBox Detector) deep learning technology [53]. In the past two or 

three years, there has been significant progress in deep learning or the deep neural network based 

on convolutional neural network (CNN) to detect visual objects. In particular, it was reported that 

deep learning has shown better image recognition capabilities than human eyes [53]. SSD deep 

learning is based on the famous VGG-16 architecture and includes additional convolutional layers 

to extract features at multiple scales [53]. Specifically, SSD can complete image classification and 

object localization in a single forward pass of the network. Another advantage of SSD is its real-

time performance, “scoring over 74% mAP (mean Average Precision) at 59 frames per second on 

standard datasets such as PascalVOC and COCO.” [54] 

An SSD neural network was trained in this project to detect an owl logo pasted on the 

backside of the leader vehicle, as shown in Fig. 17. 

       

FIGURE 17 

The Training Samples 

To train the SSD deep neural network, 500 images of the owl logo were acquired from 

different orientations and distances. Then, the 500 images were input to the SSD network as the 

training samples. After 2,000 training iterations, the total loss of the network converges to 1.6, as 

shown in Fig. 18, which indicates a successful training result.  



 

38 

FIGURE 18 

The Total Loss of the SSD Network After 2,000 Training Iterations 

To improve the detection speed of the SSD technology mentioned above, an image filtering 

algorithm using depth information was proposed, as shown in Fig. 19. 

 

Acquire the color 
image and depth 

Generate the image 
mask using the 
depth image  

Apply the mask over 
the color image to get 
the cropped image 

Search the visual object 
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FIGURE 19 

The Image Filtering Algorithm Using Depth Information 

In the above algorithm, the original color image and the depth image are first acquired 

through a ZED™ stereo camera. Then an image mask is generated using the depth image and the 

predefined depth range. In particular, if a pixel’s depth is within the expected depth range, the value 

of “1” will be assigned in the corresponding position in the mask. Otherwise, “0” will be assigned 

in that position. Next, the image mask is applied over the original color image to generate the 

cropped image, which includes the objects within the expected depth range only. Finally, the SSD 
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deep learning technology is employed to detect the object of interest on the cropped image. The 

image series in Fig. 20 shows the processing results using the image filtering algorithm proposed 

in Fig. 19. 

  

                                                (a)                                              (b) 

  

                                                (c)                                              (d) 

  

  

FIGURE 20 

The Image Processing Results Using the Proposed Image Filtering Algorithm: 
(a) Original Color Image; (b) Depth Image; 
(c) Image Mask; (d) Cropped Color Image 

In the proposed image filtering algorithm, since the background and the objects not within 

the expected depth range are quickly filtered, SSD deep learning just needs to search the visual 

target (the owl logo here) in a small area of the cropped color image, which significantly improves 

the speed of the computer vision subsystem. 

4.3 Develop the Communication Software for the Low-level Vehicle Control System 

A local network (LAN) is set up in the follower vehicle through a wired router. The high-

level control system (the laptop), the low-level control system (the RaspBerry Pi), and the laser 

scanner are connected in the network. A C++ TCP/IP program was developed in the laptop end, 

which can communicate with the Python program in the low-level control system. A high-level 
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communication protocol was created to deliver the sensory information and control commands 

between the high-level and low-level control systems.  

4.4 Develop Machine Learning Algorithms for Modular Tracking  

To meet various challenges in the project, a model-free neural network controller with dual 

Kalman filters was proposed, as shown in Fig. 21. 
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FIGURE 21 

Leader–Follower Controller Using the Neural Network and 
Dual Kalman Filters for Autonomous Vehicle Tracking 

In Fig. 21, the follower vehicle utilizes its onboard camera and laser distance finder to acquire 

the image of the leader vehicle that is moving in front of it and the distance d  between them. Then 

 x
the center position    of the leader vehicle in the image is extracted through the computer vision 

 y

technology. A model-free neural network controller was proposed, which adjusts the translational 

 v 
and rotational velocities r

   of the follower vehicle based on the measured x y, ,  and d . When 
ωr 

the follower vehicle is moving, since the camera is physically attached to the vehicle, the camera 

velocity ξc  is changed accordingly and a different image of the leader vehicle is observed. 
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Meanwhile, the distance between the two vehicles is also changed due to the motions of the two 

vehicles. The neural network controller is trained offline so that it can adjust r

r

v
ω
 
 
 

 continuously to 

keep a constant distance between the two vehicles and make 
x
y
 
 
 

 stay within a desired region on 

the image.  

As mentioned, the slow response time of the computer vision subsystem and the laser sensor 

could cause the control system to fail totally. In this project, a dual-Kalman-filter approach was 

proposed to solve this problem, as shown in Fig. 21. There are two Kalman filters in the control 

loop, one for the computer vision subsystem and the other for the laser distance finder, which 

predict a new 
ˆ
ˆ
x
y
 
 
 

 or d̂  based on their internal models. In addition to the filters, a selection unit 

(the “Sel” unit in Fig. 19) is designed to select a predicted measurement or a real measurement 

from the laser sensor or the computer vision subsystem. The selection strategy is as follows: If a 

new real measurement is available, the selection unit will select the new measurement as its output. 

Otherwise, the unit will select a measurement predicted by the Kalman filter as its output.  

There are two advantages observed by introducing the two Kalman filters into the control 

loop. First, since the Kalman filters take less than 3 ms to predict a new measurement estimation, 

the controller can update the control command [ ]Tr rv ω  within 10 ms, which is much faster than 

the control loop without the Kalman filters. Second, the experimental results in this project also 

show the dual-Kalman-filter approach improves the measurement reliability when the computer 

vision subsystem does not detect the leader vehicle in an image occasionally. 

A model-free neural network controller was proposed to adjust the translational and 

rotational velocities of the follower vehicle. One of the advantages of a neural network controller 

is avoiding complicated modeling and subsequent linearization of the nonlinear vehicle dynamics, 
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which is the main challenge in most model-based control approaches. The architecture of the neural 

network controller in this project is presented in Fig. 22. 

 

FIGURE 22 

Architecture of the Neural Network Controller 

In Fig. 22, the neural network controller accepts three inputs x y, , and d . In particular, x

and y represent the center of the leader vehicle on the image plane, and d represents the current 

distance between the leader and follower vehicles. Then, the controller has four output units, and 

each of those represents a specific action ( A A1 4~ ) of the follower vehicle: increase or decrease 

its translational or rotational velocities. The control strategy is learned from the samples through 

the backpropagation (BP) training algorithm [81], which are shown in Table 2. The objective of 

the controller is to keep the visual target on the rear of the leader vehicle close to the center of the 

image and maintain a constant distance between the two vehicles.  
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TABLE 2 
The Training Samples of the Neural Network 

Sample 

# 
Inputs Outputs 

 x  d  1A  2A  3A  4A  

1 0 0 2 0 0 1 

2 1 0 1 0 0 1 

3 2 0 0 0 0 1 

4 3 0 0 1 0 1 

5 4 0 0 2 0 1 

6 0 1 2 0 0 0 

7 1 1 1 0 0 0 

8 2 1 0 0 0 0 

9 3 1 0 1 0 0 

10 4 1 0 2 0 0 

11 0 2 2 0 1 0 

12 1 2 1 0 1 0 

13 2 2 0 0 1 0 

14 3 2 0 1 1 0 

15 4 2 0 2 1 0 

 

In Table 2, only x and d are considered because y almost does not change when the vehicles 

are running on a flat surface. The value of x is normalized to a number varying from 0 to 4, which 

represents the visual target position on the image plane from the far left side to the far right side. 

The normalized values of d  vary from 0 to 2, which represent a “short,” an “appropriate,” or a 

“long distance” between two vehicles. The value of each output unit ( A A1 4~ ) is telling how to 
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adjust the follower vehicle’s velocities. For example, A1 = 0  indicates keeping the current ω r , 

A1 =1 indicates increasing ω r by a constant ∆ω , and A1 = 2 indicates increasing ω r by 2∆ω . 

Before the neural network controller could run in a real vehicle tracking experiment, it was 

trained offline for 2,000 steps with 50 units in its hidden layer, using the samples in Table 2. The 

training error quickly converged to zero, as shown in Fig. 23. 
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FIGURE 23 

Training Error of the Neural Network in 2000 Steps 
Using 50 Hidden Units 

Meanwhile, the histories of several selected weights of the network are shown in Figs. 24 

and 25 where the weights converged quickly in the 2,000-step training, which indicates that the 

neural network learned the control strategy from the samples correctly. 



 

45 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

w

FIGURE 24 

History of Selected Weights from the Input Layer 
to the Hidden Layer (w(1,10), w(2,20), w(1,26), w(2,35), w(1,17)) 
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FIGURE 25 

History of Selected Weights from the Hidden Layer 
to the Output Layer (v(2,3), v(30,4), v(18,1), v(10,2), v(36,3)) 
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As mentioned previously, there are two Kalman filters designed for predicting the position 

of the leader vehicle on the image plane and the distance between the two vehicles. The model of 

the first Kalman filter for the computer vision subsystem is given in Equation 1. 

Xk = F X⋅ +
 

k k−1 w
 (1) 

 Zk = H X⋅ k k+ v

where,  

X k = [u
T

k kv uk vk uk kv ] is the state variable;  

( ,u vk k )  = the estimated position of the leader vehicle on the image plane at time k ;  

Zk = the measured position using the computer vision algorithm at time k ;  

F = the state transition matrix; 

H = the measurement matrix; 

wk = the process noise; and  

vk = the measurement noise at time k .  

Both wk  and vk are the zero mean Gaussian white noise, i.e. w Qk ~ Ν(0, k ) and 

v Rk ~ Ν(0, k ) , where Qk  and Rk are the covariance matrices.  

In this project, a constant acceleration model was assumed. In other words, it was assumed 

that the position of the leader vehicle on the image plane is moving with a constant acceleration. 

As a result, the matrices F and H  were derived as follows: 
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 1 0 1 0 0.5 0
 0 1 0 1 0 0.5 
 0 0 1 0 1 0

 F =    (2) 
 0 0 0 1 0 1
 0 0 0 0 1 0
 
 0 0 0 0 0 1

1 0 0 0 0 0
 H =    (3) 

0 1 0 0 0 0

It was also assumed that: 

10−4 0 0 0 0 0 
 0 10−4 
 0 0 0 0 
 0 0 10−4 0 0 0 

 Qk =    (4) 
 0 0 0 10−4 0 0 
 0 0 0 0 10−4 0 
 
 0 0 0 0 0 10−4 

10 0 
 Rk =    (5) 

 0 10

Based on the above model, the Kalman filter continuously predicts the new positions of the 

leader vehicle on the image plane. Meanwhile, once a new real measurement is extracted from the 

image using the computer vision algorithm, it is employed to correct the filter. In the experiments 

in this project, it was observed that the Kalman filter usually takes less than 3 ms to predict a new 

position, while the computer vision algorithm takes more than 1,000 ms to return a new 

measurement. As a result, there are many predictions between the two adjacent measurements.  



 

48 

Compared to the Kalman filter used in the computer vision subsystem, the second Kalman 

filter for the laser sensor is much simpler, so its details are not presented here. 

4.5 Field Test and Improvement 

Several experiments with mobile robots were carried out to validate the proposed control 

strategy when the leader vehicle was moving along a straight-line, circular, or “S”-shaped 

trajectory. The experimental results for the circular trajectory are presented in Figs. 26 to 30. For 

example, the trajectories of the two vehicles are shown in Fig. 26 where the leader vehicle was 

moving along a circular trajectory with a radius of about 2.5 meters. As shown in the figure, the 

follower vehicle successfully tracked the leader vehicle. 
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FIGURE 26 

Trajectories of the Two Vehicles 

Fig. 27 shows the x-coordinate of the visual sign on the image plane, which was extracted by 

the computer vision algorithm or predicted by the first Kalman filter. The computer vision 

subsystem takes about 1,050 ms to obtain a new measurement of the position of the visual sign. 
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Between every two adjacent measurements, the Kalman filter predicts a new position for the visual 

sign. Based on the results shown in Fig. 27, it is evident that the Kalman filter worked well. 
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FIGURE 27 

The x-coordinate of the Visual Sign on the Image Plane Extracted 
by the Cascade Classifier Algorithm and Predicted by the First Kalman Filter 

Fig. 26 presents the distance between the two vehicles measured by the laser scanner and 

predicted by the second Kalman filter. It shows that the values predicted by the second Kalman 

match the real measurements of the laser scanner very well. 
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FIGURE 28 

Distance between the Two Vehicles Measured by the Laser Scanner 
and Predicted by the Second Kalman Filter 

 The outputs of the neural network controller will adjust the translational and rotational 

velocities of the follower vehicle so that it can track the leader vehicle reliably. Therefore, it is 

interesting to observe how these velocities are adjusted when the leader vehicle moves along a 

circular trajectory. The history of the translational velocities of the two vehicles is presented in 

Fig. 27 while the history of the rotational velocities is shown in Fig. 28. 
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Translational Velocities of the Two Vehicles 
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Rotational Velocities of the Two Vehicles 
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Based on these experimental results provided in Figs. 24 to 28, the proposed control strategy 

with dual Kalman filters works successfully and effectively in a two-vehicle mobile robot 

autonomous tracking situation. 
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5 TASK SET 1: Feasibility (Cost–Benefit) Study of the SMFe-BRT 
Concept 

5.1  Motivation 

Atlanta, Georgia, and its metropolitan area is one of the fastest growing regions in the nation. 

According to the Atlanta Regional Commission (ARC) 2014 Transportation Fact Book [82], the 

region has been adding approximately 74,000 people each year since 1982. In 2011, the Atlanta 

metropolitan region became the ninth largest in the nation with a population size of 4.3 million. 

This number exceeded 5.8 million in 2017 according to the U.S. Census Bureau.  Increasing 

population of the region and its demand for transportation infrastructure are causing severe 

congestion in Metro Atlanta. Total annual hours of delay have increased from 25,000 hours in 1982 

to 150,000 hours in 2011. However, the supply of public transportation remains comparatively low 

and does not meet this increasing demand. The annual public transportation passenger miles 

traveled in Atlanta only range from 500 miles to 1,000 miles from the years of 1982 to 2011 [82]. 

As a result, the major state highways—Interstate 75, Interstate 85, and Interstate 285—suffer from 

severe congestion. As seen in Fig. 31, the level of service (LOS) by travel time index (TTI) indicates 

a LOS of F for most of the interstates in the northern part of Atlanta. Particularly, the region 

between Cobb County and Fulton County is one of the most congested areas in Metro Atlanta. This 

area experiences the highest travel demand, especially from daily commuters [41]. The only form 

of public transportation supplied in this area is Cobb Linc Route 10, which connects the Marietta 

Transfer Center with the MARTA Arts Station [83].  
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FIGURE 31 

Most Congested Highway Segments, December 2014 [82] 

5.2 Objectives and Overview 

Bus rapid transit has gained popularity around the world in many metropolitan areas. BRT 

systems have been widely adopted because of their operational flexibility as well as lower operating 

costs [84]. Although BRT already has shown many benefits over traditional municipal buses, 

continued improvements to the original BRT have been made over time. This feasibility study is 

focused on a novel vehicle concept that the research team named Slim Modular Flexible Electric 

Bus Rapid Transit, which has the following key features: 
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• The system consists of one lead module and one or more follower modules 

• Each module is 25% narrower in width compared to a traditional BRT vehicle 

• The follower modules are self-propelled using in-wheel electric motors 

• The modules are virtually coupled for easy detaching and attaching 

Because of the narrower body of the modules, less right-of-way would be required for the 

dedicated bus lane, which translates to considerable savings in right-of-way and construction costs. 

The virtual coupling of modules permits flexibility in operations to better meet varying travel 

demand throughout a day. With each follower module being self-propelled by in-wheel electric 

motors, the SMFe-BRT provides an environment-friendly transit alternative. 

To test the proposed vehicle concept and compare it with the traditional BRT, the researchers 

selected two of the busiest corridors in Georgia for this study: (1) Cobb Parkway, an arterial 

corridor, and (2) Georgia State Route 400 (GA 400), a freeway corridor. Both corridors have 

experienced severe congestion, especially during the peak periods of demand. The foremost reason 

for selecting those two locations is the fact that BRT systems are currently planned for those 

corridors.  

5.2.1 Cobb Parkway Corridor  

The Connect Cobb Corridor project was proposed in 2015 to improve the existing transit 

system [85]. The project runs from Kennesaw State University’s Kennesaw Campus to the 

MARTA Arts Center station and consists of the following key features: 

• Proposed bus rapid transit system 

• Construction of dedicated bus lanes—center- and side-running dedicated guide lanes 

• Usage of I-75 high-occupancy vehicle (HOV) lanes  

• Total distance of 25.3 miles of the proposed BRT line 

• BRT with a short headway of 8 minutes 
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• 15 proposed BRT stations  

This study focuses on the section from Barret Lakes Boulevard to Akers Mill Road (indicated 

in purple in Fig. 32). This road section is approximately 12 miles long and includes a number of 

major signalized intersections (listed below), where transit signal priority will be assumed.  

• Cobb Parkway + Barrett Lakes Boulevard/Greers Chapel Road 

• Cobb Parkway + Progressive Way 

• Cobb Parkway + Bells Ferry Road 

• Cobb Parkway + Canton Road ramps (exit and entrance) 

• Cobb Parkway + Allgood Road Northeast 

• Cobb Parkway + North Marietta Parkway 

• Cobb Parkway + Roswell Street Northeast 

• Cobb Parkway + South Marietta Parkway 

• Cobb Parkway + South Cobb Drive ramps (exit and entrance) 

• Cobb Parkway + Terrell Mill Road Southeast 

• Cobb Parkway + Windy Hill Road Southeast 

• Cobb Parkway + Herodian Way 

• Cobb Parkway + Cumberland Boulevard 

• Cobb Parkway + Spring Road Southeast 

• Cobb Parkway + Circle 75 Parkway 

• Cobb Parkway + I-285 ramps (exit and entrance) 

• Cobb Parkway + Akers Mill Road 

• Cumberland Boulevard + Spring Road Southeast  

• Cumberland Boulevard + Cumberland Parkway Southeast  

• Cumberland Boulevard + Akers Mill Road 

• Akers Mill Road + I-75 HOV Lane ramp 
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FIGURE 32 

Proposed Connect Cobb Corridor Project, April 2015 [85] 
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5.2.2 GA 400 Corridor  

As documented in the GA 400 Transit Initiative’s Environmental Impact Statement [86], 

there are four factors contributing to the need for the GA 400 Transit Initiative: 

• Increased travel demand and resulting congestion generated by employment and 

population growth 

• Limited existing transit mobility within northern Fulton County and inadequate 

connectivity to other major activity centers 

• Transit travel times that are not competitive with automobile travel times 

• Economic development opportunities being impacted by congestion 

BRT will be added as part of the GA 400 Express Lane project. The project is approximately 

12 miles long, running from the North Springs Station to Windward Parkway in northern Fulton 

County, as shown in Fig. 33. 
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FIGURE 33 

Proposed GA 400 Corridor Project, April 2015 [86] 
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5.3 Review of Literature 

5.3.1 Introduction 

The research team reviewed the literature pertaining to this study, including the following 

aspects:  

• Assumptions for generating future conditions 

• Commuting tendency in Metro Atlanta, and the studies on BRT impacts in other cities 

similar to Atlanta 

• Environmental impacts and emission studies by vehicle types 

• Methods for multicriteria evaluation of transportation projects, especially applications of 

the analytic hierarchy process (AHP) method 

5.3.2 Future Ridership Prediction 

5.3.2.1 Commuting Data in Atlanta [87]  

Prior to making a prediction of future public transit ridership, it is essential to investigate the 

existing average percentage of demand for public transit. Residents in Metro Atlanta rely heavily 

on their personal vehicles. Despite existing transit services provided by MARTA’s bus and rail 

lines, USDOT Bureau of Transportation statistics show 79.6 percent (compared to 76.3 percent 

nationwide) of Metro Atlanta commuters drive alone [2]. U.S. Census Bureau statistics show that 

the percentage of commuters who choose personal vehicles has been increasing, and those who 

choose public transportation has been decreasing since 1990. Data in 2014 indicate that the 

percentage of public transit choice in Metro Atlanta is only 10.6% (see Fig. 34).  
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FIGURE 34 

Commute Mode Share in Atlanta: 1990 to 2014 (Source: 1990 Census, 2000 Census, 2010 
Census; and American Community Survey, 2006, 2010, 2014) [87] 

5.3.2.2 BRT Ridership Study [88] 

Due to the advanced technologies, improved designs, and features, BRT systems have gained 

popularity over the past decade. This popularity has promoted the public’s demand for the BRT 

systems. To measure the changes in BRT ridership, Peak et al. collected data for 10 consecutive 

months in six BRT-operating cities. The results show that all six BRT-operating cities have 

experienced significant increases in ridership. In Las Vegas, the Metropolitan Area Express (MAX) 

system introduced by the Regional Transit Committee (RTC) is responsible for a 35 to 40 percent 

growth in ridership. Alameda–Contra Costa (AC) Transit achieved the highest (84 percent) 

increases in ridership in the governing districts. Table 3 summarizes the ridership increases in 

various cities where BRT systems have been adopted.  
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TABLE 3 
The Effect of BRT Service on Transit Ridership 

 

It can be inferred that the introduction of BRT systems would typically induce an increase in 

ridership.  

5.3.2.3 Ridership Responsiveness [89] 

Traditionally, the demand for public transportation has been more responsive to its service 

than the monetary values, like bus fares. The data gathered from cities such as Detroit, 

Chesapeake/Norfolk, Madison, and Stevenage, and from Great Britain indicate that the mean transit 

headway elasticity is −0.47 with a standard deviation of ±0.14 for all service hours. For higher 

service demand during peak hours, the mean value is −0.27 with a standard deviation of ±0.14.  

The magnitude of elasticities indicates the relative change (e.g., percent change) in demand given 

a relative change (e.g., one percent change) in headway.  The negative sign of the elasticity indicates 

that increasing headway will decrease demand.  Since the magnitudes of the elasticity are less than 

1.0, they imply that the demand is inelastic to headway changes in general.    



 

63 

5.3.2.4 Analysis of Vehicle and Person Throughput [90] 

Given that personal vehicles are the major mode of commute in Metro Atlanta, the existing 

HOV lanes on Interstate 85 (I-85) were experiencing congestion. To further improve the 

serviceability of I-85, HOV lanes were converted into high-occupancy toll (HOT) lanes and opened 

to traffic in 2011. Guensler et al. conducted this study after the conversion took place to examine 

changes in vehicle occupancy, and vehicle and passenger throughput on I-85.  

Since the implementation of tolls on the lanes, the average vehicle occupancy on the HOT 

lanes has decreased from around 2 persons per vehicle to that of the general-purpose lanes. 

Observed occupancies for the lanes on I-85 are shown in Table 4. Year 2012 is the latest observed 

year, and the average vehicle occupancy (AVO) for all lanes is in the range of 1.16–1.20 persons 

per vehicle. 

TABLE 4 
Observed Occupancy by Lane, Spring 2012, PM 

 

5.3.3 Emission Calculations 

5.3.3.1 Public Transit Fuel Type [91] 

Knowing the fuel type of a vehicle is the initial step for emission calculations. Most heavy 

and public transit vehicles historically have used diesel fuel, and diesel is still the main source of 

fuel for heavy vehicles being manufactured. However, with the rising concerns for the environment 

and air quality, alternative fuels have gained popularity. Compressed and liquefied natural gas, dual 

fuel engines, grid-connected, and hybrid electric are some alternative fuels that are available today.  
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Among the alternative fuels mentioned above, natural gas propulsion is the primary 

alternative for diesel public transit vehicles. In the U.S., approximately 7000 public transit vehicles 

are operated by natural gas. Between the two major types of natural gas propulsion system, 

compressed natural gas (CNG) is generally chosen over liquefied natural gas (LNG).  

5.3.3.2 Automotive Emissions [92] 

Depending on the purpose of a vehicle, the specific fuel type can be chosen as part of the 

vehicle design. To estimate emissions from in-use vehicles, Faiz et al. defined the main pollutants 

from automobile emissions. Harmful pollutants include carbon monoxide (CO), nitrogen oxides 

(NOx), unburned hydrocarbons, volatile organic compounds (VOCs), and particulate matter (PM). 

Other pollutants measured include non-methane organic gases (NMOG). Since natural gas is 

mostly methane (CH4), CNG vehicles were measured with much lower NMOG than gasoline or 

diesel vehicles; however, CNG vehicles produced higher emissions of methane. Vehicle emission 

pollutants mentioned above were measured for CNG transit buses and listed as follows: 

• CO, PM2.5, NOx, THC [93] 

The U.S. Environmental Protection Agency (EPA) measured CNG transit bus emission 

rates for CO, PM2.5, and NOx. It found that vehicles’ emissions are discharged at different 

rates, depending on the manufactured year groups and the vehicle age groups. For the most 

recent manufactured years from 2007 to 2013, and age groups of 0–3 years, the pollutants 

were measured as follows: 2.18 g/mile for NOx, 5.93 g/mile for CO, and 0.0016 g/mile for 

PM2.5. Total hydrocarbon content (THC) for the same manufactured year and age group 

was 4.33 g/mile.  

• Nitrous Oxide (N2O), Methane (CH4) [94]   

The EPA also measured N2O and CH4 emission rates for on-road CNG transit buses. The 

rates are listed as 1.97 g/mile for CH4, and 0.175 g/mile for N2O.  
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• Carbon Dioxide (CO2) [95] 

In a study for the International Council on Clean Transportation, Delgado and Muncrief 

measured CO2 emission rates for CNG buses as 2,250 g/mile.  

• Volatile Organic Compounds (VOCs) [96] 

The EPA lists the ratio of VOC to THC as 0.004. With the THC rate of 4.33 g/mile provided 

above, the VOC rate can be calculated, using the given ratio, as 0.017 g/mile.  

5.3.4 Analytic Hierarchy Process in Practice 

Given the AHP as a widely used multi-criteria decision making (MCDM) framework, this 

subsection focuses on previous studies that used the AHP method for the evaluation of 

transportation projects. 

5.3.4.1 The Case of Cracow, Poland [97] 

In 2014, Nosal and Solecka applied the AHP method to evaluate the integrated system of 

urban public transport (ISUPT) in Cracow. ISUPT was considered there for mobility management 

purposes, and to encourage people’s use of public transportation and bicycles and their choice of 

walking. The purpose of their study was to present the methodology of MCDM used and to apply 

it to assess ISUPT alternatives. They presented eight variants for ISUPT design in Cracow and 

created 10 evaluation criteria. 

Criteria were chosen based on the survey of three interest groups: passengers, operators, and 

city authorities; and the 10 criteria are as follows: (1) travel time, (2) journey standard, (3) rolling 

stock use index, (4) environmental impact, (5) level of integration of public urban transport system, 

(6) reliability of urban public transport system, (7) safety of journeys, (8) profitability of urban 

public transport systems, (9) availability of urban public transport systems, and (10) investment 

costs. The importance of these criteria as weighted by the three interest groups are indicated in Fig. 

35. 
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FIGURE 35 

Definition of the Importance of the Criteria, Results of Surveys Conducted in Cracow[97] 

5.3.4.2 The Case of Korea [98] 

As the highway system affects the users greatly, Tabucanon and Lee emphasized 

improvements of the infrastructure. They used the AHP tool to select the alternative modes of 

highway route improvements in Korea, using the measures of effectiveness (MOEs). The AHP 

model was developed using the survey data and interviews of various interest groups’ members. 

The highway users, the government, and the community members were chosen as the interest 

groups for the AHP model development. Among the three interest groups, the most important group 

was the highway users, with the weight assigned as 57%. The community members were the next 

important with a weight of 29%, and the government was the least important with a weight of 13%. 
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The significance of the community members in the literature was due to people’s socio-economic 

status, and the diverse demand.  

Each of the interest groups was given a different set of factors. Highway users were given 

travel time, travel cost, safety, congestion, and convenience, and they ranked the travel time factor 

the highest. Community members were given factors of regional equity, air pollution, noise impact, 

household displacement, and convenience. Because the highway system is part of the social 

production and distribution system, it promotes the accumulation of public and private capital and 

technology, and enhances market activity and income distribution and thus leads to improved living 

standards, regional specialization of the industry for the efficient use of national resources. It can 

also lead to balanced regional development and assists the achievement of regional equity and 

national unity [98]. The regional equity can be measured by travel cost/time to regional center and 

gross regional products of an area. As a result of the community survey, regional equity was valued 

the most by the community members.  

The authors compared the preference order results. The AHP method was the main tool of 

evaluation in this literature; however, economic analysis, such as net present worth, benefit–cost 

ratio, and internal rate of return, was also conducted for comparison purposes. As shown in Table 5, 

the application of the AHP method yielded different priority results than the economic analysis 

across alternatives. 

TABLE 5 
The Preference Order Using Both Economic and AHP Analyses 

 

5.3.4.3 The Case of Lithuania [99] 

The rail system in Lithuania is not very attractive to its passengers because of the low speed, 

low level of comfort, and the low quality of railways and the dynamic characteristics of the 
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locomotives. Sivilevicius and Maskeliunaite developed an AHP method to aid decision making for 

adopting a more effective rail system in Lithuania.  

The evaluation criteria for this study were organized based on the railway trip quality and 

were divided into four main categories: (1)  technical state of the track, (2) railway planning and 

technology, (3) price of the ticket, and (4)  safety of the railroad.  

5.3.4.4 The Case of Singapore [100] 

The research problem lies with rapid economic development in Singapore. Singapore’s desire 

to build a world-class transportation system encouraged the researchers to investigate alternative 

fuel use for the years of 2020–2030. The goal was to displace oil as a source of fuel. A multiple 

criteria decision method was used to identify 10 different fuel options, and then filter down to 

4 main fuel alternatives. The AHP method was used for selecting the best fuel system, and the 

alternatives were evaluated based on economic, technical, and social considerations. Sensitivity 

analysis was also performed, which provides stability for the most optimum solution, especially 

when the parameters are sensitive to change. The AHP method was also used for forward and 

backward planning to determine the likely future conditions as well as the necessary policies.  

The 10 preliminary alternative fuels are provided below. The alternatives were screened 

using the multiple criteria decision method, and narrowed down to four: (1) status quo, (2) oil and 

electric vehicles (EV), (3) oil and natural gas vehicles (NGV), and (4) methanol-fueled vehicles. 

Status quo refers to no change in transportation fuel. These four alternatives were evaluated using 

different criteria: consumer preference, safety, cost, supply, technology, and emission. 

In addition, the policy that aids the selected alternatives was chosen from this list: 

• Policy P1: to provide financial incentives to promote the use of electric vehicles 

• Policy P2: to adopt stricter emissions standards for motor vehicles 

• Policy P3: to provide the infrastructure to facilitate recharging of electric vehicles 
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• Policy P4: to lengthen the life of the certificate of entitlement for electric vehicles compared 

with oil vehicles 

It was found, after performing three steps of forward and backward processes, that the use of 

electric vehicles would be the best option, along with the combination of Policies P1 and P3.  

5.3.5 Application of Analytic Hierarchy Process 

5.3.5.1 Weight Assignments by Experts [101] 

Multicriteria decision analysis is typically used for selecting the optimal option for 

transportation projects. Although cost-benefit analysis (CBA) is a popular decision-supporting tool, 

it becomes inappropriate or less effective when the alternatives have values that are hard to 

monetize. In their study, Schlickmann et al. used the AHP method for evaluation of transit 

alternatives. The alternatives were defined as no build, BRT, and light rail transit (LRT). They 

selected three main criteria: finance, transport, and land use. 

One of the crucial steps in performing the AHP method is to consider experts’ opinions in 

assigning criteria weights. The study shows the recent survey data answered by 19 experts from 

different countries—Brazil, Canada, Germany, the Netherlands, Portugal, and the U.S. The survey 

data are shown in Table 6. According to the assigned weights, the biggest influencers for choosing 

an alternative were travel time, revenues, mode share, and operation and maintenance (O&M) costs, 

since they add up to 60% of the total weight.  
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TABLE 6 
Priority Profile 

 

 

5.4 Methodology 

5.4.1 Microsimulation – Vissim Model Parameters 

The microsimulation software, PTV Vissim, was selected as the simulation tool. This 

subsection discusses the Vissim network inputs that had constant values across the alternatives 

evaluated. 

5.4.1.1 Desired Speed Decisions 

Desired speeds were assumed to follow respective speed limits, i.e., 45 mph for 

Cobb Parkway; 35 mph for intersecting roads with Cobb Parkway; and 65 mph for GA 400.  
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5.4.1.2 Driving Behaviors 

The drivers’ behaviors were assumed to follow urban (motorized) driving behaviors. The 

Wiedemann 74 car-following model was used, for which the desired distance between each car is 

calculated by Equation 6 [102]: 

 𝑑𝑑 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑎𝑎, (6) 

where 

𝑎𝑎𝑎𝑎 = standstill distance; 

bx = additional space between two successive vehicles if they are moving, and  

 𝑏𝑏𝑎𝑎 =  (𝑏𝑏𝑎𝑎 additive +  𝑏𝑏𝑎𝑎multiplicative  ×  𝑧𝑧 )  × √𝑣𝑣 ; 

𝑣𝑣 = vehicle speed (m/s); and 

z = value of range (0.1), which is normally distributed around 0.5 with a standard deviation 

of 0.15.  

5.4.1.3 Vehicle Compositions 

According to the traffic count data gathered, the percentages of vehicles were estimated to 

be 3% trucks, 2% buses, and 95% personal vehicles. 

5.4.1.4 Signal Controllers 

Ring barrier signal controllers are the typical type of signal controller used in all Vissim 

models. For illustration, a typical ring barrier diagram is shown in Fig. 36.  

 

 

FIGURE 36 

Typical Ring Barrier Diagram 
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5.4.1.5 Simulation Characteristics 

After the Vissim models were established, the simulations were executed five times to 

generate network performance data. The purpose of multiple simulation runs is to capture the 

variance in the results. Changing random seed number within Vissim for each simulation prevents 

each simulation from having the same outcome.  

The total length of the Vissim simulation was set for 5,400 simulation seconds (5,400 real-

time seconds). The seeding period was set to be 1,800 simulation seconds. During the seeding 

period, a unique traffic composition was planted into the Vissim network. The actual recording 

periods for reporting were 3,600 simulation seconds. The simulation results were recorded and 

compiled for the AM peak, PM peak, and off-peak periods each under the following conditions: 

• Future condition with BRT, 27% ridership increase 

• Future condition with SMFe-BRT, 27% ridership increase 

• Future condition with SMFe-BRT, 32% ridership increase 

Note that the 27% ridership increase for the traditional BRT alternative was determined based on 

the literature review. Given the advantageous features of SMFe-BRT over the traditional BRT, a 

32% ridership increase with SMFe-BRT is expected and was, thus, evaluated. However, 27% 

ridership increase for SMFe-BRT was also studied for comparison purposes. 

To account for the flexibility of SMFe-BRT in meeting varying demand, the suggested 

numbers of modules for different operating periods or different headways are shown in Table 7. 

Note that for Cobb Parkway, a constant headway of 8 minutes was used for all peak and off-peak 

periods, and three modules were assigned for peak periods and two modules were assigned for the 

off-peak period. For GA 400, the numbers of modules are suggested values for different headways; 

the actual assignment in the simulation may be different depending on demand. The maximum of 

four modules allows for all boarding passengers being picked up at the busiest station. 
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TABLE 7 
Number of Modules for SMFe Operations 

 

Cobb Parkway GA-400

Ridership 
Increase Time

Number of 
modules

Carrying 
Capacity Headway

Number 
of 

modules
Carrying 
Capacity

AM peak 3 105 5 minutes 2 70
27% PM peak 3 105 10 minutes 3 105

Off peak 2 70 15 minutes 3 105
AM peak 3 105 20 minutes 4 140

32% PM peak 3 105
Off peak 2 70

5.4.2 Vissim Model Development: Existing Conditions 

5.4.2.1 Vehicle Volume Inputs 

As vehicle input data were obtained from different agencies along Cobb Parkway, the data 

were compiled and organized in Excel® spreadsheets. The year 2019 is referenced as the base year, 

and Year 2040 is referenced as the future year in this study. Given the Atlanta Braves’ stadium as 

a development of regional impact (DRI) in the region, traffic generated by this DRI is considered 

in deriving future traffic volumes. 

5.4.2.2 Existing Public Transit: CobbLinc  

The existing CobbLinc ridership data were obtained during the marked data collection 

duration. The typical duration of the data collection period is about 3 months. Since Vissim inputs 

are hourly based, the average ridership for AM peak, PM peak, and mid-day peak conditions were 

derived and used. 

5.4.3 Vissim Model Development: Future Conditions  

5.4.3.1 Dedicated Bus Lanes 

A key feature of the traditional BRT and SMFe-BRT is the dedicated bus lanes. For Cobb 

Parkway, a center-running dedicated guideway will be added from the northernmost part to the 

southernmost part of Cobb Parkway. From the center-running dedicated lanes, the express lanes 
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will be transformed into the side-running dedicated guideways [83]; see Figs. 37 and 38. In Vissim, 

at center-running locations, the existing lanes will be shifted to the side and the proposed dedicated 

guideways will be added in the middle.  

 

FIGURE 37 

Proposed Typical Section on Cobb Parkway – Center-Running Dedicated Guideway 

 

FIGURE 38 

Proposed Typical Section on Akers Mill Road – Side-Running Dedicated Guideway 

For the GA 400 corridor, three transit alternatives were proposed: one heavy rail transit 

(HRT) alternative and two BRT alternatives. The HRT alternative operates in an exclusive 

guideway on either side of the GA 400 right-of-way. For the two BRT alternatives, one uses the 

same alignment as the HRT alternative and the other operates within the planned Georgia 

Department of Transportation (GDOT) managed lanes along GA 400.  



 

75 

5.4.3.2 Vehicle Volumes Prediction 

Future conditions represent the year 2040. To properly account for background traffic growth 

over time, vehicle volumes were factored up by an annual traffic growth rate using Equation 7 

[103]. 

 𝐸𝐸𝑡𝑡+𝑚𝑚 = 𝐸𝐸𝑡𝑡 × (1 + 𝑔𝑔)𝑚𝑚 (7) 

where 

𝐸𝐸𝑡𝑡+𝑚𝑚 = Annual Average Daily Traffic (AADT) value of 𝑡𝑡 year, forecasted 𝑛𝑛 years in the  

future;𝐸𝐸𝑡𝑡 = AADT observed in base year 𝑡𝑡; and 

𝑔𝑔 = AADT annual growth rate. 

Given the Atlanta Braves’ stadium as a DRI, its traffic impacts were considered as well.  

An increase in public transit ridership is well expected with the introduction of the BRT 

system. This would result in a decrease in network vehicle volumes. Considering the assumptions 

made in ridership, the decrease in network traffic volumes was estimated and reflected in the future 

traffic volumes. The future traffic volumes were derived by following the steps below. 

1. From the existing traffic volumes, the year 2040 background traffic volumes were 

estimated by applying a growth rate (Equation 7).  

2. The project volumes from the Atlanta Braves Development of Regional Impact traffic 

study [104] were obtained and adjusted to reflect 2040 project conditions.  

3. The traffic volumes from (1) and (2) above were added to obtain total 2040 traffic volumes. 

4. A traffic volume reduction by introducing the new public transit alternatives (described in 

the next subsection) was applied to obtain effective future (2040) network traffic volumes.  
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5.4.3.3 Ridership Forecast 

The introduction of either traditional BRT or SMFe-BRT is expected to increase the existing 

public transportation ridership, which is 10.6% for commuters [87]. From the cities that have 

already adopted BRT, a significant increase in ridership has been observed. Based on the BRT 

Ridership Analysis [88], the ridership increase ranges from 27% to 84%. To be realistic and 

conservative, the lower end of the ridership growth, 27%, was assumed for traditional BRT in this 

study. Given the more advantageous features of the proposed SMFe-BRTs, an even higher ridership 

is anticipated. The additional increase in ridership for SMFe-BRTs is estimated by referencing the 

Ridership Responsiveness subsection in the Review of Literature in Section 5.3. Because the 

ridership response and the change in wait time are interdependent, an assumption was made that 

SMFe-BRT would reduce the passenger wait time by 5 minutes compared to the traditional BRT, 

due to its operational flexibility. As such, the wait times for BRT and SMFe-BRT are estimated to 

be 30 minutes and 25 minutes, respectively. Based on the variability of wait time on ridership at 

peak-hours conditions, which was estimated to be −0.27 [89], the 17% reduction in wait time would 

yield approximately a 5% reduction in ridership. In other words, the SMFe-BRT is expected to 

have 5% additional ridership over the traditional BRT. The future ridership and reduction in 

network vehicles are related by Equation 8.  

 𝐹𝐹𝐹𝐹𝑡𝑡𝐹𝐹𝐹𝐹𝐹𝐹 𝑅𝑅𝑅𝑅𝑑𝑑𝐹𝐹𝐹𝐹𝑅𝑅ℎ𝑅𝑅𝑖𝑖 = 𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝑅𝑅 𝑅𝑅𝐹𝐹𝑑𝑑𝐹𝐹𝑖𝑖𝐹𝐹𝑑𝑑 × 𝐴𝐴𝑣𝑣𝐹𝐹𝐹𝐹𝑎𝑎𝑔𝑔𝐹𝐹 𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹 𝑂𝑂𝑖𝑖𝑖𝑖𝐹𝐹𝑖𝑖𝑎𝑎𝑛𝑛𝑖𝑖𝑂𝑂 (8) 

Given that the average vehicle occupancy in Metro Atlanta is very close to 1, it was assumed that 

future ridership is equal to vehicles removed [90]. By following Step 3 in the Vehicle Volumes 

Prediction subsection, the network vehicles reduced due to the ridership increase can be estimated 

by Equation 9. 
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𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝑅𝑅 𝑅𝑅𝐹𝐹𝑑𝑑𝐹𝐹𝑖𝑖𝐹𝐹𝑑𝑑27% = 0.106 𝑉𝑉(3) + (0.106)(1 + 0.27)𝑉𝑉(3) 

= (0.106)(2.27)𝑉𝑉(3) 
(9) 

where 

𝑉𝑉(3) = the Step 3 results from the Vehicle Volumes Prediction section.  

Equation 9 was used for the traditional and SMFe-BRT’s 27% increase in ridership. Likewise, with 

SMFe-BRT’s 32% increase in ridership, the network vehicles reduced can be estimated by 

Equation 10. 

 𝑉𝑉𝐹𝐹ℎ𝑅𝑅𝑖𝑖𝑖𝑖𝐹𝐹𝑅𝑅 𝑅𝑅𝐹𝐹𝑑𝑑𝐹𝐹𝑖𝑖𝐹𝐹𝑑𝑑32% = (0.106)(2.32)𝑉𝑉(3) (10) 

5.4.3.4 Traffic Signal Timing  

For Cobb Parkway, adjustments were made on future signal timing as additional 

bus-dedicated guideways are added. Transit priority was coded in the simulation by using check-

in and check-out detectors at signalized intersections where the center dedicated BRT lanes are 

proposed. When the check-in detector detects the BRT vehicle, the phase for the BRT is activated 

if the current phase is red or is extended if the current phase is green. For the locations where the 

signalized intersection is located just ahead of a proposed station, the standard presence detectors 

are used instead. The typical method of reflecting the BRT signal priority in the existing signal 

timing involves using additional signal phases (e.g., 9 and 10) for the BRT or SMFe-BRT vehicles 

with check-in and check-out detectors for the dedicated lanes and adjusting signal timing for other 

phases accordingly. An example at the Cobb Parkway and South Marietta Parkway intersection is 

provided in Fig. 37. The assigned movements for each signal group (SG) are as follows: 

SG 1: Northbound left; SG 2: Southbound through; SG 3: Westbound left; SG 4: Eastbound 

through; SG 5: Southbound left; SG 6: Northbound through; SG 8: Westbound through; 

SG 9: Dedicated lane Southbound; SG 10: Dedicated lane Northbound. Additional signal 
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groups 12 and 16 are assigned as overlap signals of SG 2 and SG 6. The primary purpose of the 

overlapped signals is to allow green time for dedicated lanes when the southbound and northbound 

phases, SG 2 and SG 6, are green. SG 302 and SG 306 are assigned to the dedicated lanes for transit 

priority. Check-in detectors 312 and 316 are assigned to SG 302 and 306 each, and so as checkout 

detectors 322 and 326. Fig. 39 captures the moment when a public transit vehicle enters the 

intersection. As shown on the signal timing table, the phases are shortened once the vehicle checks 

in with detector 316, and the green phase is given to SG 10 (SG 306).  

 

FIGURE 39 

Ring Barrier Signal Timing at the Intersection of Cobb Pkwy and S. Marietta Pkwy 

5.4.3.5 Emission Estimation  

It is essential to know the fuel type of the BRT. As part of MARTA’s goal for sustainability, 

Compressed natural gas (CNG) buses will be introduced [105]. Following the recent trend, it was 

assumed that the future BRTs will be run on CNG fuel.  

The emission calculation based on CNG was computed using Equation 11. The equation is 

formed based on the emission factors of each pollutant, multiplying the distance. The distance is 

converted from the speed the vehicle is traveling at the time step. These data are collected from 

Vissim every 10 seconds.  
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 𝐸𝐸𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑚𝑚𝑚𝑚𝑡𝑡 (𝑔𝑔) = 𝐸𝐸𝐹𝐹 × 𝑣𝑣 ×
1 (ℎ𝐹𝐹)

3600 (𝑅𝑅𝐹𝐹𝑖𝑖)
× 10 (𝑅𝑅𝐹𝐹𝑖𝑖) (11) 

where, 

𝐸𝐸𝐹𝐹 = emission factor by pollutant (g/mile); and 

𝑣𝑣 = the speed of the vehicle at the time step (mph). 

Note that since SMFe-BRT modules will be fully electric, there will be no emissions from the 

SMFe vehicle.  

5.4.4 Multicriteria Evaluation  

5.4.4.1 Weights for Decision Criteria 

Similar groups of criteria from a previous study [101] were adopted in this study. Some 

weights for subcriteria were reallocated or adjusted accordingly. The resulting priority profile is 

shown in Table 8.  
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TABLE 8 
AHP Priority Profile 

 

Criteria Sub-Criteria Final Weights
Equivalent 

Weights
0.46

Delay* 0.72 0.33
Wait time 0.28 0.13

0.13
CO 0.14 0.02
CO2 0.14 0.02

PM2.5 0.14 0.02
NOX 0.14 0.02

CH4 0.14 0.02

N2O 0.14 0.02
VOC 0.14 0.02

0.41
Capital Cost 0.22 0.09

O&M 0.33 0.13
Revenue 0.45 0.18

* Note for GA-400 Corridor, the delay criteria is removed. 
    Wait time takes the whole weight of 0.46.

Transport

Finance

Environment 
(Emissions)
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5.4.4.2 Analytic Hierarchy Model 

The hierarchical structure of the AHP model developed in this study is shown in Fig. 40.  
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Traditional 
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FIGURE 40 

Hierarchical Structure of the Model 

Note that the performance measures for the first two criteria, i.e., Transport and Environment, were 

derived from the network simulation runs. For assessing the finance of projects, regional cost data 

and revenues from the estimated ridership were used, which are discussed in the following 

subsection. 
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5.4.5 Finances 

5.4.5.1 Capital Cost Estimate [106] 

The “Connect Cobb: Northwest Transit Corridor Alternatives Analysis” includes the detailed 

costs per the design alternatives. While categories such as stations, support facilities, and site work 

capital costs will likely remain the same for BRT and SMFe alternatives, the guideway is expected 

to be different. Since the SMFe-BRT will be 25% slimmer in body width than the regular BRT, the 

construction and material costs for the guideway and track elements would be lower than the 

traditional BRT system. The unit cost of grade-exclusive right-of-way was $992 per linear foot in 

2012. This unit cost was factored up 1.09, based on the historical consumer price indices, to obtain 

dollar value in the year 2019, which is $1,081.28 per linear foot [107]. The total costs for the 

traditional BRT were calculated based on the estimated length of the proposed guideway, 11.9 

miles for Cobb Parkway and 12 miles for GA 400. Because of the slimmer body of SMFe-BRT, a 

25% reduction was applied for the material used for constructing the dedicated lane.  

5.4.5.2 Operation and Maintenance Cost  

According to the “Georgia Department of Transportation Fact Book,” a total of $14,561,221 

was spent on asphalt and concrete roadway pavement maintenance and repair in 2012 [108]. That 

breaks down to a unit cost of $303.36 per lane mile, provided the Department conducted the annual 

maintenance of 48,000 lane miles in Georgia. The O&M unit cost also was adjusted to reflect dollar 

value in 2019, resulting in $330.66 per lane mile [108]. 

For BRT O&M costs, the research team used data from Seattle, Washington, where BRT had 

been adopted and operated. According to the Madison Area Transportation Planning Board, vehicle 

operations and related costs are $75.61 per BRT annual revenue bus hours; vehicle maintenance–

related costs are $1.39 per BRT revenue bus miles; articulated bus premiums are $0.35 per BRT 

revenue bus miles; ticket vending machine maintenance costs are $6,500 per machine unit; and 

station and stop maintenance costs are $2,000 per directional bus stops [109].  
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Annual bus hours and bus miles were calculated using the simulated travel times and 

distances for the BRT and SMFe-BRT lines. For daily bus revenue estimation, only simulated hours 

were considered. For the Cobb Parkway corridor, the proposed bus stations are located in the center 

of the roadway. For the O&M calculation purposes, it was assumed that the center-located bus 

stations are shared for both directions. The number of ticket machines was assumed to be the same 

as the number of bus stations.  

5.4.5.3 Revenues 

Annual revenues for the proposed systems were calculated using the simulated results. The 

total boarding passengers for AM, PM, and off-peak conditions were extracted from the simulation 

runs, and the annual total number of boarding passengers was estimated for weekday conditions. A 

MARTA ticket costs $2.50 for a one-way trip. In 2014, approximately 75,500 people commuted to 

work on MARTA per workday, among those approximately 41,500 people used MARTA because 

they had no other alternative means of transportation [110].  Instead of purchasing single-way 

tickets for $2.50 each trip, these people were assumed to purchase a monthly pass, which translates 

to a lower per-trip cost.  For estimation purposes, the monthly pass was assumed to be $80, which 

is equivalent to $1.82 per trip based on the assumption of 22 weekdays per month and two trips per 

weekday).  The annual revenues were estimated by multiplying the numbers of boarding passengers 

by the respective trip costs.  
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6 FINDINGS/RESULTS 

6.1 Findings from Task 2 

The developed power and propulsion system for each of the lead and follower module 

prototypes works properly when operated by a remote-control unit, for motor throttling (forward 

and reverse), steering, regenerative braking, and emergency braking. Outdoor tests indicate that the 

design of these prototypes yields performance that meets or exceeds the technical objectives 

(mainly straight-line speed and cornering speed) proposed for their power, propulsion, steering, 

and braking systems. 

6.2 Findings from Task 3 

The developed leader–follower controller works properly in an indoor environment. In order 

to solve the measurement delay problem, a dual-Kalman-filter strategy and a multi-thread 

programming technique were integrated into the control scheme. The indoor experimental results 

using two autonomous vehicles validated the effectiveness and robustness of the proposed 

approach. Meanwhile, the researchers observed some challenges in the outdoor tests. In particular, 

a regular laser sensor cannot obtain correct measurements in a bright outdoor environment. 

6.3 Findings from Task 1 

The scenarios studied for both the Cobb Parkway and GA 400 corridors are summarized in 

Table 9. 
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TABLE 9 
Summary of Study Scenarios 

  

Corridor Scenario Study Period
BRT - 27% Ridership Increase AM Peak, PM Peak, Off-peak

Cobb Parkway SMFe - 27% Ridership Increase AM Peak, PM Peak, Off-peak
SMFe - 32% Ridership Increase AM Peak, PM Peak, Off-peak
BRT  - 5 min headway AM Peak, PM Peak
BRT - 15 min headway Off-peak

GA-400 SMFe - 5 min headway AM Peak, PM Peak
SMFe - 10 min headway AM Peak, PM Peak
SMFe - 15 min headway Off-peak
SMFe - 20 min headway Off-peak

 
Five simulations were conducted for each study period corresponding to each scenario in Table 9. 

This resulted in 45 (i.e., 9×5) simulation runs for each corridor.  

6.3.1 Cobb Parkway Corridor Results 

6.3.1.1 Network Performance 

The network results from simulations for the Cobb Parkway corridor are summarized in 

Table 10. Note that the results are the averages of five simulation runs. 

As shown in Table 10, the Average Delay for BRT 27% and SMFe 27% are relatively the 

same for the AM peak condition. For the PM peak condition, SMFe 27% has a slightly higher 

Average Delay than the BRT 27%. For the off-peak condition, SMFe 27% shows a slightly lower 

Average Delay than BRT 27%. The same trend applies to the metrics of Average Stop Delay and 

Average Stops. 

The poorer performance of SMFe during the PM peak condition (which is worse than the 

AM peak condition) could be attributable to the fact that the slimmer SMFe modules, which are 

virtually coupled by design, will result in an overall longer body than the traditional BRT vehicle. 

Given the transit signal priority, the direct implication of this design feature is a longer disruption 

to the signal operations than its counterpart BRT vehicle because of a longer dwell time for the 

transit phase. This likely caused more stops or longer delays to other vehicles in the conflicting 



 

 

87 

TABLE 10 
Cobb Parkway – Network Results from Vissim Simulations 

 

Performance AM Peak PM Peak Off Peak
Indicator BRT 27% SMFe 27% SMFe 32% BRT 27% SMFe 27% SMFe 32% BRT 27% SMFe 27% SMFe 32%

Average Delay 205 205 200 212 219 214 98 96 94
Average Stop Delay 147 147 143 161 167 163 64 62 61
Average Stops 2.73 2.73 2.65 2.71 2.75 2.69 1.92 1.88 1.85
Average Delay 341 447 445 342 489 492 519 454 454
Average Stop Delay 178 125 121 179 147 153 353 293 285
Average Stops 7.05 5.38 5.31 7.26 6.38 6.36 6.97 6.47 6.90
Total Alighting Passengers 1,890 1,979 1,838 2,216 1,957 1,793 2,418 2,020 1,959
Total Boarding Passengers 2,105 2,280 1,945 2,358 2,192 1,919 2,572 2,278 2,085
Total Occupancy 3,515 4,047 3,282 4,315 4,098 3,377 4,374 4,052 3,744
Total Waiting Passengers 12,227 14,926 11,696 15,838 14,474 11,565 15,352 14,754 13,161
Total Waiting Time(sec.) 107,815 119,313 113,776 121,625 122,961 110,942 128,768 117,520 118,004
Average Waiting Time  (sec./person) 8.82 7.99 9.73 7.68 8.50 9.59 8.39 7.97 8.97

Highway 
Vehicles

Transit 
Vehicles

Transit 
Users
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traffic flow. It also depends on the time point in the signal cycle at which the SMFe vehicle 

approaches each signalized intersection along the arterial. This effect would be nonexistent if the 

SMFe-bus operates on a freeway. On the other hand, the enhanced performance of the SMFe-BRT 

during the off-peak condition is due to the reduced number of modules (i.e., two modules for the 

off-peak condition as compared to three modules for the AM and PM peak conditions) where transit 

signal priority would cause less disruption to the general traffic flow. 

Additional automobile users switching to SMFe-BRT will lead to increased ridership. For 

the SMFe 32% scenario, this will result in a slightly reduced network vehicle volume, which 

explains the slight reduction in Average Delay, Average Stop Delay, and Average Stops as 

compared to the SMFe 27% scenario. It should be noted that the possible latent demand of network 

traffic was not explicitly accounted for in the simulations. 

 By comparing SMFe 32% with BRT 27%, all three metrics (i.e., Average Delay, Average 

Stop Delay, and Average Stops) are lower for SMFe 32%, which signals a better performance of 

SMFe for the AM peak condition. However, for the PM peak condition, the SMFe 32% still results 

in a higher Average Delay and Average Stop Delay since the PM peak condition is worse than the 

AM peak condition. This implies that additional ridership increase is required to outperform the 

BRT 27%. However, if measured by Average Stops, SMFe 32% outperforms BRT 27%. 

The performance summary for the transit vehicle in Table 10 reveals a similar trend as 

discussed previously, except that SMFe has a lower Average Stops and Average Stop Delay. 

Based on the statistics on transit users, for SMFe 27%, the Average Waiting Time is lower 

for the AM peak and off-peak conditions because more passengers were served during those 

periods as compared to BRT 27%. However, the Average Waiting Time for SMFe 27% becomes 

higher than for BRT 27% in the PM peak condition due to a smaller number of users served because 

of its longer service time. Increasing ridership to 32% results in a longer Average Waiting Time. 

This is due to the fact that three modules were used with an 8-minute headway for both the 
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27% SMFe and 32% SMFe scenarios. For the SMFe 32% scenario, all transit users waiting at each 

station may not be picked up at once, resulting in an overall longer Average Waiting Time. 

6.3.1.2 Evaluation based on Multiple Criteria 

Multicriteria evaluation was conducted based on three criteria: (1) Transport, 

(2) Environment, and (3) Finance. Each criterion includes a number of subcriteria. For example, 

the Transport criterion was evaluated based on two subcriteria: Average Delay and Average 

Passenger Wait Time for transit. Those performance data were compiled from network simulation 

runs. The Environmental impact was evaluated based on a list of subcriteria of various types of 

emissions, which are also obtained from network simulation runs. The Finance criterion considers 

three subcriteria: Capital Cost, Operations and Maintenance, and Revenue. The values derived for 

those various subcriteria are summarized in Table 11. As seen, the highest emission was CO2, 

followed by CO, NOx, and CH4. SMFe had lower capital cost because of its narrower module 

bodies, which require 25% less material for the dedicated lane. It should be pointed out that right-

of-way costs were not considered in this study since it varies dramatically by locations. Significant 

capital savings can be reaped if the right-of-way costs were considered. The O&M costs are similar. 

SMFe 32% had a higher revenue because of the additional ridership. 

TABLE 11 
Cobb Parkway – Summary of Subcriteria Values  

 

Criteria Sub Criteria AM PM
OFF-
PEAK AM PM

OFF-
PEAK AM PM

OFF-
PEAK

Avg. Delay (sec./veh) 204.99 204.57 98.28 204.78 215.24 95.91 199.85 219.93 93.54
Avg. Passenger Wait 
Time (sec./person)

7.68 8.50 9.59 8.82 7.99 9.73 8.39 7.97 8.97

CO2 (g) 36926.39 37724.26 36665.99
CO (g) 97.32 99.42 96.64
PM 2.5 (g) 0.03 0.03 0.03
NOx (g) 35.78 36.55 35.53
CH4 (g) 32.33 33.03 32.10
N2O (g) 2.87 2.93 2.85
VOC (g) 0.28 0.29 0.28
Capital Cost
O&M
Revenue

BRT 27% SMFe 27% SMFe 32%

Transport

Environment 
(Emissions)

Finance
152,995,920$                                  114,746,940$                                  114,746,940$                                  

849,197$                                          862,428$                                          862,428$                                          
3,568,033$                                      3,469,478$                                      3,804,900$                                      
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Based on the subcriteria values in Table 11, the AHP model was applied by comparing two 

scenarios: (1) BRT 27% vs. SMFe 27%, and (2) BRT 27% vs. SMFe 32%, for three operating 

periods: AM peak, PM peak, and off-peak. The results are summarized in Table 12. 

TABLE 12 
Cobb Parkway – Multicriteria Evaluation Results  

Operating Hour Comparison BRT SMFe Preferred
AM Peak BRT 27% and SMFe 27% 0.435 0.565 SMFe
PM Peak BRT 27% and SMFe 27% 0.432 0.568 SMFe
Off Peak BRT 27% and SMFe 27% 0.429 0.571 SMFe
AM Peak BRT 27% and SMFe 32% 0.430 0.570 SMFe
PM Peak BRT 27% and SMFe 32% 0.428 0.572 SMFe
Off Peak BRT 27% and SMFe 32% 0.424 0.576 SMFe  

As shown in Table 12, with a higher overall score, SMFe is preferred for all six comparisons. 

6.3.2 GA 400 Corridor Results 

GA 400 is a freeway corridor, which is different than Cobb Parkway. As such, transit signal 

priority is not considered as an influential factor to the network performance. The main variable in 

this setting was the operating time headway of transit vehicles. To compare the two transit 

alternatives, BRT and SMFe, in a realistic fashion, the headway was varied by the operating time 

period. A 5-minute headway was used for AM peak and PM peak periods for BRT. Two headways, 

5 minutes and 10 minutes, were used for SMFe. For the off-peak period, a 15-minute headway was 

used for BRT and two headways of 15 minutes and 20 minutes were used for SMFe. The goal of 

using two headway settings was to examine the operational flexibility of SMFe by varying the 

number of modules. 

6.3.2.1 Network Performance 

The network results from simulations for the GA 400 corridor are summarized in Table 13. 

As shown in Table 13, the Average Waiting Time was significantly lower, nearly in half, if SMFe 

was operated in 10-minute headway as compared to 5-minute headway. The Total Waiting 
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Passengers were relatively the same for the AM peak and PM peak periods, but the Total Waiting 

Time was reduced by almost 50%. By referencing the SMFe operations settings in Table 7, a 

varying number of modules (2–4) was suggested based on the headway. The waiting time is 

dramatically reduced due to operating more modules with a longer headway. However, for the off-

peak period when the demand is not an issue, increasing headway will in turn increase the Average 

Waiting Time because passengers have to wait longer times at stations due to the longer headway.  

For GA 400, the Average Passenger Wait Time was used as the only subcriterion for the 

Transport criterion because of the separated operation of transit vehicles from other vehicles. Note 

the distinction between GA 400 and Cobb Parkway, which is an arterial corridor where the transit 

vehicles interact with other vehicles at signalized intersections with transit signal priority.  

Other subcriteria values are summarized in Table 14. Note that the highest emission was CO2, 

followed by CO, NOx, and CH4. The amounts of emissions are larger than those of Cobb Parkway 

because there is a much heavier traffic volume on GA 400.  For the off-peak period, the lower 

O&M cost is due to the longer headway (less frequent bus operations) and the lower revenue results 

from a lower ridership.  
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TABLE 13 
GA 400 – Transit Results from Vissim Simulations 

 

AM Peak PM Peak Off Peak
Performance BRT SMFe SMFe BRT SMFe SMFe BRT SMFe SMFe

Indicator hw = 5 min hw = 5 min hw = 10min hw = 5 min hw = 5 min hw = 10min hw = 15 min hw = 15 min hw = 20min
Total Alighting Passengers 547 540 542 543 537 554 365 486 475
Total Boarding Passengers 2,798 2,808 2,699 2,682 2,649 2,592 1,248 2,104 2,070
Total Occupancy 5,158 5,114 5,068 5,006 4,936 4,916 2,810 3,921 3,916
Total Waiting Passengers 6,312 6,270 6,362 6,211 6,072 6,092 21,114 15,861 5,125
Total Waiting Time(sec.) 190,441 184,527 90,431 190,460 186,626 91,520 75,364 67,339 48,713
Average Waiting Time  (sec./person) 30.17 29.43 14.22 30.66 30.74 15.02 3.57 4.25 9.50

 

TABLE 14 
GA 400 – Summary of Subcriteria Values 

 

5 min 5 min 15 min 5 min 5 min 15 min 10 min 10 min 20 min
headway headway headway headway headway headway headway headway headway

Criteria Sub Criteria AM PM OFF-PEAK AM PM OFF-PEAK AM PM OFF-PEAK

Transport
Avg. Passenger Wait 
Time (sec./person)

30.17 30.66 3.57 29.43 30.74 4.25 14.22 15.02 9.50

CO2 (g) 137,547.10 137,605.00 45,982.20
CO (g) 362.51 362.67 121.19
PM 2.5 (g) 0.10 0.10 0.03
NOx (g) 133.27 133.32 44.52
CH4 (g) 120.43 120.48 40.26
N2O (g) 10.70 10.70 3.58
VOC (g) 1.04 1.04 0.35
CAPITAL COST
O&M 188,279$           187,784$           99,537$          197,994$           197,868$           103,379$            128,550$           128,511$           79,398$              
REVENUES 1,493,251$        1,557,729$        694,675$       1,475,210$        1,563,297$        1,171,638$        1,443,027$        1,502,828$        1,152,484$        

BRT SMFe

Environment 
(Emissions)

Finance
152,995,920$                                                                  114,746,940$                                                                      114,746,940$                                                                      
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Based on the subcriteria values in Table 14, the AHP model was applied by comparing 

BRT and SMFe operations subject to the same and different time headways, which were varied by 

time periods. The results are summarized in Table 15. All comparisons, except the off-peak period 

with the longer headways (i.e., 15 minutes for BRT and 20 minutes for SMFe), indicate that SMFe 

is a better option because of an overall higher evaluation score. In particular, operating SMFe at 

10-minute headway during both AM peak and PM peak periods is clearly superior to operating 

BRT at 5-minute headway during the same peak periods. This is indicated by the nearly doubled 

evaluation scores of SMFe compared to BRT (highlighted rows in Table 15).  

TABLE 15 
GA 400 – Multicriteria Evaluation Results  

 
  

Operating Hour Comparison BRT SMFe Preferred
AM Peak 5 min headway for both BRT and SMFe 0.428 0.572 SMFe
PM Peak 5 min headway for both BRT and SMFe 0.430 0.570 SMFe
Off Peak 15 min headway for both BRT and SMFe 0.426 0.574 SMFe
AM Peak 5 min headway for BRT and 10 min headway for SMFe 0.334 0.666 SMFe
PM Peak 5 min headway for BRT and 10 min headway for SMFe 0.338 0.662 SMFe
Off Peak 15 min headway for BRT and 20 min headway for SMFe 0.504 0.496 BRT
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7 CONCLUSIONS 

This research project sought to improve upon conventional BRT via a novel vehicle concept 

that the research team called the SMFe-bus. The key features of this vehicle are: (1) its narrower 

width (25–50% slimmer than a regular bus), requiring less right-of-way; (2) that it consists of a 

lead module with a driver cab, and a few driverless follower modules/cars trailing behind it; (3) that 

its follower modules can be easily attached and detached from the preceding module by way of 

“virtual coupling” to meet varying passenger demand by time of day with optimized operations; 

and (4) given the smaller size of the modules, that each of them are self-propelled by in-wheel 

electric motors, which will allow the modules to better negotiate turns while being more friendly 

to the environment than fossil-fuel engines. The significance of this project is that it will lead to a 

system that costs less than conventional BRT (by reducing right-of-way and construction costs), 

while providing an equal or better level of service, and is more environmentally friendly. 

This initial phase of the planned multi-stage research project was aimed at achieving the 

following objectives regarding the Slim Modular Flexible Electric Bus Rapid Transit (SMFe-BRT) 

concept and the Slim Modular Flexible Electric Bus (SMFe-bus) vehicle: 

1. Demonstrate a higher benefit-to-cost ratio for the SMFe-BRT approach compared to the 

existing BRT approach (using Cobb County’s BRT proposal and MARTA’s GA 400 

Transit Initiative’s BRT option as case studies), and determine infrastructure design and 

operational feature requirements 

2. Develop two-wheel-drive prototype lead and follower SMFe-bus modules with 3-hp 

motors and 150-Ah battery pack, capable of speeds greater than 15 mph  

3. Demonstrate straight-line following by the two-module prototype SMFe-bus at 15 mph 

within an 8-ft-wide path, and also proper tracking of 90-degree cornering at 4 mph within 

the swept path of a 40-ft city transit bus 



 

96 

The following was accomplished: 

1. For the feasibility study, the SMFe-BRT was evaluated against the traditional BRT at two 

projects sites (Cobb Parkway and GA 400) in Georgia, where BRT options are currently 

considered. This evaluation was conducted in a multicriteria context. Network operations 

data, including delay, stops, emissions, and revenues, were obtained from multiple 

simulation runs for different scenarios. Regional cost data were utilized to estimate capital 

and O&M costs. The key findings of this study are as follows: 

a. The SMFe-BRT service times are generally longer than those of the traditional BRT 

due to the overall longer vehicle body when operating during peak periods of demand. 

The increased number of modules during the peak periods provides additional carrying 

capacity, but also increases the service time for boarding and alighting at busy stations.  

b. When operating along an arterial corridor, because of transit signal priority, the 

dwelling time for SMFe-BRT phase would be longer than that for the traditional BRT 

during the peak periods because of the longer body of the SMFe-bus (consisting of 

virtually coupled multiple modules) than the traditional BRT vehicle. This likely 

disrupts traffic flow of other vehicles, especially those in conflicting movements during 

the peak periods. As a result, the overall network delay may be increased. Note that the 

operational benefits expected from the SMFe-BRT mainly include less waiting time 

for transit riders (because of demand-responsiveness) and fewer delays or congestion 

for other vehicles (because of reduced network traffic due to shifted trips to the 

SMFe-BRT mode). Implementing SMFe-BRT would be desirable if those operations 

benefits outweigh the adverse effect of traffic signal disruption to other vehicles. 

c. When operating along a freeway corridor, the headway would be a key variable for 

SMFe-BRT operations. As demonstrated in this study, significant benefits can be 
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reaped if proper headways are selected in accordance with operating periods of 

different demands.  

d. Fuel type is one of the main differences between the traditional BRT and the 

SMFe-BRT. The traditional BRT in this study was assumed to be powered by 

compressed natural gas, while SMFe-BRT will be fully electric. As such, SMFe-BRT 

is assumed to have zero emissions. However, this is contingent upon the assumption 

that the electricity driving the SMFe vehicle is generated from a clean energy source.  

2. The developed power and propulsion system for each of the lead and follower module 

prototypes works properly when operated by a remote-control unit, for motor throttling 

(forward and reverse), steering, regenerative braking, and emergency braking. Outdoor 

tests indicate that the design of these prototypes yields performance that meets or exceeds 

the technical objectives (mainly straight-line speed and cornering speed) proposed for their 

power, propulsion, steering, and braking systems. 

3. The developed leader–follower controller works properly in an indoor environment. In 

order to solve the measurement delay problem, a dual-Kalman-filter strategy and a multi-

thread programming technique were integrated into the control scheme. The indoor 

experimental results using two autonomous vehicles validated the effectiveness and 

robustness of the proposed approach, and demonstrated module straight-line tracking up to 

4 mph for time intervals of several seconds long. Meanwhile, researchers observed some 

challenges in the outdoor tests. Specifically, a regular laser sensor cannot obtain correct 

measurements in a bright outdoor environment. 

Hence, this project fully accomplished two of its three objectives, while partially reaching 

the objective of demonstrating straight-line following by the two-module prototype SMFe-bus at 

15 mph, and also proper tracking of 90-degree cornering at 4 mph. 
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8 RECOMMENDATIONS 

Although substantial progress has been made toward a better BRT system, additional 

research and development work is needed, especially to improve the SMFe-bus’ module tracking 

performance, to make the proposed SMFe-BRT system a reality.  
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10.1 Appendix A—Low-level Python Programs 

10.1.1 Raspberry Pi Programs – Summary 

The SMFe-Bus prototype is made up of a lead module and a follower module. The follower 

module will be following/tracking the lead module without a physical connection and will rely on 

camera image and laser scanner data processing performed by a laptop, which will then command 

the follower module to make appropriate speed and steering adjustments. There are three Python 

programs that need to run simultaneously when testing the prototype lead and follower modules to 

demonstrate ‘virtual coupling and tracking’. The program operating the lead module is 

“lead_mod_t9.py.” This program will only be processing incoming signals from a radio frequency 

(RF) remote control and will not rely on data from the other programs. These incoming signals are 

received into the program as pulse-width-modulated (PWM) signals generated by the RC receiver. 

The program operating the follower module is “lmsc_v3_27.py” and will rely on commands 

sent from the laptop to adjust the hub motor speeds and the steering of the follower module. Finally, 

the last program that has to be running is “TCP_client_v1_24.py”. This program is run on the main 

control laptop that will be physically situated on the follower module. The two programs that 

operate the follower module (the laptop’s tracking program and the RPi’s lmsc_v3_27 program) 

will be using the TCP_client_v1_24.py program for them to communicate according to the TCP/IP 

protocol. 

10.1.2 Lead_mod_t9.py 

The lead module program (although this program is also run on the follower module for 

maneuvering it from its parking spot in the lab to the test site under RC operator control) starts by 

extending the brake actuator, which releases pressure on the brake system. The RF transmitter 

provides functionality for the lead module to go forward, reverse, accelerate, brake, steer, and 

engage the emergency brake. The direction to accelerate is checked by the program, immediately 
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followed by the status of the emergency brake. If the emergency brake is not engaged, the throttle 

signal is checked and the voltage being sent to the motor controllers is varied correspondingly. The 

program will next move to decipher the signal for the steering. Next, the brake signal will be 

checked and applied if necessary. The program operates in a polling fashion, checking the signals 

for the emergency brake, then the throttle, then the steering, and finally the brakes. An interrupt 

can be applied at any time to engage the emergency brake and exit the program. 

 

lead_mod_t9.py 

 
#!/usr/bin/env python 
 
import time 
from time import sleep 
import pigpio 
import Adafruit_MCP4725 
import sys 
import read_PWM     # This is an additional file. It 
needs to be in the same folder as this file to run. 
import RPi.GPIO as GPIO 
 
PWM_GPIO =4              # LEFT-RIGHT CHANNEL 1 (RIGHT JOYSTICK) 
PWM_GPIO4 = 6            # REVERSE #channel 4 
EMERGENCY = 12           # Emergency Brake Output 
REVERSE = 16 
PWM_GPIO2 = 19           # CH5 switch 
THROTTLE = 21            # Microswitch 
PWM_GPIO3 = 22           # UP-DOWN CHANNEL 3 (LEFT JOYSTICK) 
REVERSESIGN = 23   
 
BRK1_GPIO = 18    
BRK2_GPIO = 17  
BRKHALL_GPIO = 20 
STRACT1_GPIO = 25        # Steering H-Bridge signal 1 
STRACT2_GPIO = 26        # Steering H-Bridge signal 2 
STRHALL_GPIO = 27        # Hall sensor input from steering actuator 
 
k=10                     # Forward turning constant 
kr=10                    # Reverse turning constant 
SAMPLE_TIME = 1          # Adjust higher to slow down "print" time to console for 
debugging 
x=1                      # Used for countdown timer to shutdown program 
i=1 
var=1                    # For infinite loop 
c=3                     # Shutdown timer length   
 
        #PWM Values for throttle and steering     
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ThrCut = 1335                                       # Current throttle cut. Values 
lower than this will stop the car.   
ThrHigh = 1645                                      # Maximum throttle. Used to 
determine when to engagne max throttle.   
 
StrLeft = 1080                                      # PWM for maximum left 
steering 
StrMidL = 1475                                      # Values betwwen StrMidL and 
Str Mid H are a straight line. This is a range since the PWM doesn't stay in one 
place when centered. 
StrCenter = 1480                                    # Used for calcation to 
determine the steering. Should be between StrMidL and StrMidH 
StrMidH = 1485                                      # Values betwwen StrMidL and 
Str Mid H are a straight line. This is a range since the PWM doesn't stay in one 
place when centered. 
StrRight = 1935                                     # PWM for maximum right 
steering 
 
FWDPWM = 1350                                       # Reverse low value. Anything 
lower than this will allow it to enter FWD 
REVPWM = 1650 
flag = False 
 
EBakMid = 1200                                      # Since the ebrake is a switch 
this value is the middle value to deteremine on/off. 
 
BRKMIN = 1200                                       # Start value for Braking 
Range 
BRKHALL = 0 
#BRKHALLSTR = BRKMIN                                 # BRKHALL start value  
#BRKSTR = 1300 
BRKPOS = 0          
#SV = False                                          # Start value flag 
 
STRHALL = 500                                       # Hall sensor count center = 
500. 
STRHALLD = 0                                        # Used for steering algorithm. 
Steering Hall Delta is the differnce in the desired position and the current 
position. 
MAX = 575                                          # Steering right limit 
MIN = 425                                           # Steering left limit 
 
class reader: 
   """ 
   A class to read PWM pulses and calculate their frequency 
   and duty cycle.  The frequency is how often the pulse 
   happens per second.  The duty cycle is the percentage of 
   pulse high time per cycle. 
   """ 
   def __init__(self, pi, gpio, weighting=0.00): 
      """ 
      Instantiate with the Pi and gpio of the PWM signal 
      to monitor. 
 
      Optionally a weighting may be specified.  This is a number 
      between 0 and 1 and indicates how much the old reading 
      affects the new reading.  It defaults to 0 which means 
      the old reading has no effect.  This may be used to 
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      smooth the data. 
      """ 
      self.pi = pi 
      self.gpio = gpio 
 
      if weighting < 0.0: 
         weighting = 0.0 
      elif weighting > 0.99: 
         weighting = 0.99 
 
      self._new = 1.0 - weighting      # Weighting for new reading. 
      self._old = weighting            # Weighting for old reading. 
 
      self._high_tick = None 
      self._period = None 
      self._high = None 
 
      pi.set_mode(gpio, pigpio.INPUT) 
 
      self._cb = pi.callback(gpio, pigpio.EITHER_EDGE, self._cbf) 
 
   def _cbf(self, gpio, level, tick): 
 
      if level == 1: 
 
         if self._high_tick is not None: 
            t = pigpio.tickDiff(self._high_tick, tick) 
 
            if self._period is not None: 
               self._period = (self._old * self._period) + (self._new * t) 
            else: 
               self._period = t 
 
         self._high_tick = tick 
 
      elif level == 0: 
 
         if self._high_tick is not None: 
            t = pigpio.tickDiff(self._high_tick, tick) 
 
            if self._high is not None: 
               self._high = (self._old * self._high) + (self._new * t) 
            else: 
               self._high = t 
 
 
   def pulse_width(self): 
      """ 
      Returns the PWM pulse width in microseconds. 
      """ 
      if self._high is not None: 
         return self._high 
      else: 
         return 0.0 
 
 
 
   def cancel(self): 
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      """ 
      Cancels the reader and releases resources. 
      """ 
      self._cb.cancel() 
 
                           # Above is for reading analog PWM signal 
 
def STEERING(self): 
    global STRHALL 
    if GPIO.input(STRACT1_GPIO) == 1 and GPIO.input(STRACT2_GPIO) == 0: 
        STRHALL = STRHALL - 1 
    elif GPIO.input(STRACT1_GPIO) == 0 and GPIO.input(STRACT2_GPIO) == 1: 
        STRHALL = STRHALL + 1 
 
def BRAKING(self1):                                      # function to determine 
actuator position 
    global BRKHALL 
    if GPIO.input(BRK1_GPIO) == 1 and GPIO.input(BRK2_GPIO) == 0: 
        BRKHALL = BRKHALL + 1            # increments hall sensor counter when 
extending 
    elif GPIO.input(BRK1_GPIO) == 0 and GPIO.input(BRK2_GPIO) == 1: 
        BRKHALL = BRKHALL - 1            # decrements hall sensor counter when 
contracting 
 
GPIO.setmode(GPIO.BCM) 
GPIO.setup(EMERGENCY,GPIO.OUT) 
GPIO.output(EMERGENCY,GPIO.LOW) 
GPIO.setup(REVERSE,GPIO.OUT) 
GPIO.output(REVERSE,GPIO.LOW) 
GPIO.setup(REVERSESIGN,GPIO.OUT) 
GPIO.output(REVERSESIGN,GPIO.LOW) 
GPIO.setup(THROTTLE,GPIO.OUT) 
GPIO.setup(STRACT1_GPIO,GPIO.OUT) 
GPIO.output(STRACT1_GPIO,GPIO.LOW) 
GPIO.setup(STRACT2_GPIO,GPIO.OUT) 
GPIO.output(STRACT2_GPIO,GPIO.LOW) 
GPIO.setup(STRHALL_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP) 
GPIO.setup(BRK1_GPIO, GPIO.OUT) 
GPIO.setup(BRK2_GPIO, GPIO.OUT) 
GPIO.setup(BRKHALL_GPIO, GPIO.IN, pull_up_down=GPIO.PUD_UP) 
GPIO.add_event_detect(STRHALL_GPIO, GPIO.RISING, callback=STEERING, bouncetime=20) 
GPIO.add_event_detect(BRKHALL_GPIO, GPIO.RISING, callback=BRAKING, bouncetime=20) 
GPIO.output(REVERSESIGN,GPIO.LOW) 
 
dac = Adafruit_MCP4725.MCP4725(address = 0x62, busnum= 1)   # i2c address (address 
= 0x62) Left motor 
dac2 = Adafruit_MCP4725.MCP4725(address = 0x63,busnum= 1)   # Right motor 
dac3 = Adafruit_MCP4725.MCP4725(address = 0x60,busnum= 1)   # Variable Regen 
Braking 
dac.set_voltage(0)                                          # Start DAC's at 0V 
and wait 3 seconds 
dac2.set_voltage(0) 
dac3.set_voltage(0) 
 
if __name__ == "__main__": 
 
   pi = pigpio.pi() 
   p = read_PWM.reader(pi, PWM_GPIO)                   # Steering 
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   p2 = read_PWM.reader(pi, PWM_GPIO2)                 # E-Brake 
   p3 = read_PWM.reader(pi, PWM_GPIO3)                 # Throttle 
   p4 = read_PWM.reader(pi, PWM_GPIO4)                 # F/R Selection (Yaw 
Channel) 
 
   GPIO.output(BRK1_GPIO, GPIO.HIGH) 
   GPIO.output(BRK2_GPIO, GPIO.LOW) 
   print("Extending Actuator") 
   time.sleep(10) 
   GPIO.output(THROTTLE,GPIO.HIGH)                   # Starts in 
forward 
   GPIO.output(BRK1_GPIO, GPIO.LOW) 
   GPIO.output(BRK2_GPIO, GPIO.LOW) 
   BRKHALL = BRKMIN                                     # Set Hall Counter at 1200 
 
   try: 
      while var == 1:                                # Infinte loop 
 
         #time.sleep(SAMPLE_TIME)  
 
         pw = p.pulse_width()                                # Steering 
         pw2 = p2.pulse_width()                             # E-Brake 
         pw3 = p3.pulse_width()                             # Throttle 
         pw4 = p4.pulse_width()                             # Forward/Reverse 
Selection           
 
         if pw4 > REVPWM and pw3 <= BRKMIN:              # Reverse selection 
           flag = True 
           GPIO.output(REVERSE,GPIO.HIGH) 
           GPIO.output(REVERSESIGN,GPIO.HIGH) 
 
         elif pw4 < FWDPWM and pw3 <= BRKMIN:            # Forward selection 
           flag = False 
           GPIO.output(REVERSE,GPIO.LOW) 
 
         if pw2 > EBakMid: 
            GPIO.output(EMERGENCY,GPIO.HIGH)                # E-Brake ON 
            #GPIO.output(ABrake,GPIO.HIGH) 
            print("The E-Brake is ON!") 
            time.sleep(2) 
 
         elif pw2 < EBakMid: 
            GPIO.output(EMERGENCY,GPIO.LOW)                 # E-Brake OFF 
            #GPIO.output(ABrake,GPIO.LOW)  
                   
         if pw2 <= EBakMid and pw3 > BRKMIN:     
            if pw3 <= ThrCut and flag is False:                     # In 
forward but stopped 
               dac.set_voltage(0) 
               dac2.set_voltage(0) 
               #print("Forward stopped") 
            elif pw3 >= ThrHigh and flag is False:               # Full-speed 
foward 
               dac.set_voltage(2048) 
               dac2.set_voltage(2048) 
               #print("Forward full speed") 
            elif pw3 > ThrCut and pw3 < ThrHigh and flag is False: # Forward 
speed varies: 1925-1335=590 - These ranges have been tested and are incorrect.  
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               dacout = int((pw3 - ThrCut)*(3.471))             # 2048/590 = 
3.47 which converts PWM to 12 bit 
               dac.set_voltage(dacout) 
               dac2.set_voltage(dacout) 
               #print("Forward...") 
            elif pw3 <= BRKMIN and flag is True:                  # In reverse 
but stopped 
               dac.set_voltage(0) 
               dac2.set_voltage(0) 
               #print("Reverse stopped") 
            elif pw3 >= ThrHigh and flag is True:    
 # Full-speed reverse which is mutliple of this 
               dac.set_voltage(2048)                      # value 
"1966"/4096 and motor controller max. 
               dac2.set_voltage(2048) 
               #print("Reversed full speed") 
            elif pw3 > ThrCut and pw3 < ThrHigh and flag is True:   # Reverse 
speed varies: Same as FWD method 
               dacout = int((pw3 - ThrCut)*(2.29))                    # 
1966/850=2.29 
               dac.set_voltage(dacout) 
               dac2.set_voltage(dacout) 
               #print("Reverse...") 
 
         R=(500+(StrCenter - pw))                        # 500 is value random 
counter value. Must match STRHALL start. 
         STRHALLD = abs(STRHALL - R) 
         if R > MAX: 
            R = MAX 
         elif R < MIN: 
            R = MIN 
         if STRHALLD < 5: 
            GPIO.output(STRACT1_GPIO,GPIO.LOW)           # H-Bridge inputs are 
both set low since steering is in position 
            GPIO.output(STRACT2_GPIO,GPIO.LOW)       
            #print("STEERING IN POSITION")  
         elif STRHALL < R or STRHALL < MIN: 
            GPIO.output(STRACT1_GPIO,GPIO.LOW)    # H-Bright is 
move steering RIGHT 
            GPIO.output(STRACT2_GPIO,GPIO.HIGH) 
            #print("STEERING RIGHT")    
         elif STRHALL > R or STRHALL > MAX: 
            GPIO.output(STRACT1_GPIO,GPIO.HIGH)    # H-Bridge is 
moving steering LEFT 
            GPIO.output(STRACT2_GPIO,GPIO.LOW) 
            #print("STEERING LEFT") 
 
         BRKPOS = BRKHALL - pw3                           # BRKPOS compares 
current position to desired position 
         BRKTHR = BRKHALL                                 # BRKTHR is the Max 
Braking Limit 
         if BRKTHR < 1175: 
          BRKTHR = 1175 
         if BRKPOS < 4 and BRKPOS > (-4): 
            time.sleep(0.01) 
            GPIO.output(BRK1_GPIO, GPIO.LOW)              # Stopped when current 
position and desired position are  
            GPIO.output(BRK2_GPIO, GPIO.LOW)              # in range of 4 and -4  
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            print("Not Moving") 
         elif pw3 < BRKMIN: 
            if BRKPOS >= 4 and BRKHALL >= BRKTHR: 
              GPIO.output(BRK1_GPIO, GPIO.LOW)          # Moving in  
              GPIO.output(BRK2_GPIO, GPIO.HIGH) 
              print("Moving In/In Breaking Zone") 
            elif BRKPOS >= 4 and BRKHALL < BRKTHR:        # Stopped (Max Brake 
Position) 
              GPIO.output(BRK1_GPIO, GPIO.LOW) 
              GPIO.output(BRK2_GPIO, GPIO.LOW) 
            elif BRKPOS <= (-4): 
                GPIO.output(BRK1_GPIO, GPIO.HIGH)        # Moving out, in 
braking range 
                GPIO.output(BRK2_GPIO, GPIO.LOW) 
                print("Moving Out/In Breaking Zone") 
         elif pw3 >= BRKMIN: 
            GPIO.output(BRK1_GPIO, GPIO.HIGH)             # Moving out, out of 
braking range 
            GPIO.output(BRK2_GPIO, GPIO.LOW) 
            print("Moving Out/Applying Throttle") 
         #elif pw3 >= BRKMIN and BRKHALL > BRKHALLSTR: 
          #  GPIO.output(BRK1_GPIO, GPIO.LOW)              # Moving in, incase 
actuator overshoots 
          # GPIO.output(BRK2_GPIO, GPIO.HIGH) 
          #  print("Moving In/Applying Throttle") 
 
 
         print("BRKHALL = {} ".format(BRKHALL)) 
         print("BRKPOS = {} ".format(BRKPOS)) 
         print("BRKHALLSTR = {} ".format(BRKHALLSTR)) 
         #print("Steeering ={} ".format(int(pw)))        # Steering     
         #print("E-Brake ={} ".format(int(pw2)))         # E-Brake 
         #print("Rev/Fwd ={} ".format(int(pw4)))         # Rerse 
         print("Throttle ={} ".format(pw3))       # UP DOWN 
         #print("Steering Count(STRHALL) ={} ".format(STRHALL)) 
         #print("Steering Position(R) ={} ".format(R)) 
         #print("Steering PW = {} ".format(pw)) 
         #print("Steering HALLD = {} ".format(STRHALLD)) 
 
   except KeyboardInterrupt: 
      dac.set_voltage(0) 
      dac2.set_voltage(0) 
      GPIO.output(EMERGENCY,GPIO.HIGH) 
      GPIO.output(STRACT1_GPIO,GPIO.LOW)               
      GPIO.output(STRACT2_GPIO,GPIO.LOW)  
      while (x < c): 
         print("PiBus is stopping in, {} seconds".format(c - x)) 
         x = x + 1 
         sleep(1) 
      GPIO.cleanup() 
      sys.exit() 
 
   p.cancel() 
   pi.stop() 
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10.1.3 lmsc_v3_27.py 

Similar to the lead module program, the follower module program starts by extending the 

brake actuator, which releases pressure on the brake system. The very next operation of the program 

is to check the signal of the emergency brake button. An RF remote, similar to the RF remote of 

the lead module, will send a signal to the follower program if the designated switch on the remote 

is activated. It is the only function of the follower module RF remote. All other instruction will 

come directly from the laptop. If the emergency brake is engaged, a series of events will ensue on 

the follower module. First, the electric brake system will activate via a designated GPIO pin. Then, 

the physical brake system actuator will start to retract, applying pressure to the brakes. The values 

for the speed of the two motors will be sent to the laptop during this process. Once this process has 

finished and the follower module has stopped, the brake system will be disengaged and the 

emergency brake will be switched off, as long as the actual RF remote switch has been turned off.  

As long as the emergency brake switch is not activated, the program will simply wait for the 

TCP client to connect. When it does connect, the follower module will wait for commands from 

the “TCP_client_v1_24.py” program on the laptop. Currently, the “TCP_client_v1_24.py” 

program being run to test the follower module only provides a final speed for the follower module 

to accelerate to until the user cancels the program. This acceleration is optimized by a proportional–

integral–derivative (PID) controller class. The program operates in a polling fashion constantly 

checking the emergency brake signal and then receiving data from the laptop. An interrupt can be 

applied at any time to engage the emergency brake and exit the program. 

 

lmsc_v3_27.py 

 
#!/usr/bin/env python 
 
import time 
from time import sleep 
from datetime import datetime 
import pigpio 
import Adafruit_MCP4725 
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import Adafruit_ADS1x15 
import sys 
import socket 
import RPi.GPIO as GPIO 
import logging 
import threading 
import struct 
import random 
import math 
 
 
#################################################### 
# RESERVED FOR PWM READER 
#################################################### 
 
 
class reader: 
    """ 
    A class to read PWM pulses and calculate their frequency 
    and duty cycle.  The frequency is how often the pulse 
    happens per second.  The duty cycle is the percentage of 
    pulse high time per cycle. 
    """ 
    def __init__(self, pi, gpio, weighting=0.00): 
        """ 
        Instantiate with the Pi and gpio of the PWM signal 
        to monitor. 
 
        Optionally a weighting may be specified.  This is a number 
        between 0 and 1 and indicates how much the old reading 
        affects the new reading.  It defaults to 0 which means 
        the old reading has no effect.  This may be used to 
        smooth the data. 
        """ 
        self.pi = pi 
        self.gpio = gpio 
 
        if weighting < 0.0: 
           weighting = 0.0 
        elif weighting > 0.99: 
           weighting = 0.99 
 
        self._new = 1.0 - weighting      # Weighting for new reading. 
        self._old = weighting            # Weighting for old reading. 
 
        self._high_tick = None 
        self._period = None 
        self._high = None 
 
        pi.set_mode(gpio, pigpio.INPUT) 
 
        self._cb = pi.callback(gpio, pigpio.EITHER_EDGE, self._cbf) 
 
    def _cbf(self, gpio, level, tick): 
 
        if level == 1: 
 
            if self._high_tick is not None: 
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                t = pigpio.tickDiff(self._high_tick, tick) 
 
                if self._period is not None: 
                    self._period = (self._old * self._period) + (self._new * t) 
                else: 
                    self._period = t 
 
            self._high_tick = tick 
 
        elif level == 0: 
 
            if self._high_tick is not None: 
                t = pigpio.tickDiff(self._high_tick, tick) 
 
                if self._high is not None: 
                    self._high = (self._old * self._high) + (self._new * t) 
                else: 
                    self._high = t 
 
 
    def pulse_width(self): 
        """ 
        Returns the PWM pulse width in microseconds. 
        """ 
        if self._high is not None: 
            return self._high 
        else: 
            return 0.0 
 
 
 
    def cancel(self): 
        """ 
        Cancels the reader and releases resources. 
        """ 
        self._cb.cancel() 
 
                           # Above is for reading analog PWM signal 
 
#################################################### 
# RESERVED FOR MODIFIED PWM READER CLASS 
#################################################### 
 
 
class PwmReader(reader): 
 
    def __int__(self, pi, gpio, weighting=0.00): 
 
        reader.__init__(self, pi, gpio, weighting=0.00) 
 
        self.gpio = gpio 
 
    def refresh(self): 
 
        self._high_tick = None 
        self._period = None 
        self._high = None 
        self._cb.cancel() 
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        self._cb = self.pi.callback(self.gpio, pigpio.EITHER_EDGE, self._cbf) 
 
 
#################################################### 
# RESERVED FOR Hall Sensor Handler Class 
#################################################### 
 
 
class HsensorHandler: 
 
    def __init__(self, pi, gpio_lft, gpio_rht): 
 
        self.pi = pi 
        self.gpio_lft = gpio_lft    # PWM GPIO (Left -> 13)    
        self.gpio_rht = gpio_rht    # PWM GPIO (Right -> 23) 
 
        # trig hall sensor reader 
        self.pl = PwmReader(self.pi, self.gpio_lft) 
        self.pr = PwmReader(self.pi, self.gpio_rht) 
 
    def close(self): 
 
        self.pl.cancel() 
        self.pr.cancel() 
        print("PWM readers stopped.") 
        time.sleep(1) 
 
 
#################################################### 
# RESERVED FOR SPEED CONTROLLER CLASS 
#################################################### 
 
 
class SpdCtrl(HsensorHandler): 
 
    def __init__(self, pi, gpio_lft, gpio_rht, dac_lft, dac_rht): 
 
        HsensorHandler.__init__(self, pi, gpio_lft, gpio_rht) 
 
        # PID Parameters 
        self.Kpwm = 48.0/4096.0 
        self.Kp = 0.840     # Initial Kp value is 0.840 (0, 1.8, 0.002) 
        self.Ki = 2.02      # Initial Ki value is 2.02  (0, 3.2, 0.002) 
        self.Kd = 0.008     # Initial Kd value is 0.008 (0, 0.2, 0.0002) 
 
        # PID Parameters (Left) 
        self.op_lft = 0.0    # controller output 
        self.sp_lft = 0.0    # Set Point 
        self.pv_lft = 0.0    # process variable 
        self.e_lft = 0.0     # error 
        self.ie_lft = 0.0    # integral of the error 
        self.dpv_lft = 0.0   # derivative of the pv 
        self.P_lft = 0.0     # proportional 
        self.I_lft = 0.0     # integral 
        self.D_lft = 0.0     # derivative 
        self.sp_lft = 0.0    # set point 
 
        self.pv_p_lft = 0.0    # previous value of pv 
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        self.ie_p_lft = 0.0    # previous value of ie 
 
        # PID Parameters (Right) 
        self.op_rht = 0.0    # controller output 
        self.sp_rht = 0.0    # Set Point 
        self.pv_rht = 0.0    # process variable 
        self.e_rht = 0.0     # error 
        self.ie_rht = 0.0    # integral of the error 
        self.dpv_rht = 0.0   # derivative of the pv 
        self.P_rht = 0.0     # proportional 
        self.I_rht = 0.0     # integral 
        self.D_rht = 0.0     # derivative 
        self.sp_rht = 0.0    # set point 
 
        self.pv_p_rht = 0.0    # previous value of pv 
        self.ie_p_rht = 0.0    # previous value of ie 
 
        # Upper and Lower limits on OP 
        self.op_hi = 409.6 
        self.op_lo = 0 
 
        # PID Sample Time 
        self.pid_smp_tm = 0.001  # 1ms 
 
        # PID loop flags 
        self.first_pid_lp = True 
 
        # Initialize DAC 
        self.dac = dac_lft 
        self.dac2 = dac_rht 
 
    def get_pid_parameters(self): 
 
        pid_para = [self.Kp, self.Ki, self.Kd] 
        return pid_para 
 
    def read_left_motor_speed(self): 
         
        return self.pv_lft 
 
    def read_right_motor_speed(self): 
 
        return self.pv_rht 
 
    def write_left_motor_speed(self, pv_lft): 
 
        self.pv_lft = pv_lft 
 
    def write_right_motor_speed(self, pv_rht): 
 
        self.pv_rht = pv_rht 
 
    def refresh_left_pwm_reader(self): 
 
        self.pl.refresh() 
 
    def refresh_right_pwm_reader(self): 
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        self.pr.refresh() 
 
    # define DAC outputer (motor controller input) 
    def dac_handler(self, amature_voltage_lft, amature_voltage_rht): 
 
        # amature_voltage 
        Va_lft = amature_voltage_lft 
        Va_rht = amature_voltage_rht 
 
        if Va_lft > 4.8: 
            dacout = 4096 
        elif Va_lft > 0 and Va_lft <= 4.8: 
            dacout = (4096/4.8)*Va_lft 
        elif Va_lft <= 0: 
            dacout = 0 
        else: 
            dacout = 0 
 
        if Va_rht > 4.8: 
            dac2out = 4096 
        elif Va_rht > 0 and Va_rht <= 4.8: 
            dac2out = (4096/4.8)*Va_rht 
        elif Va_rht <= 0: 
            dac2out = 0 
        else: 
            dac2out = 0 
 
        self.dac.set_voltage(int(dacout)) 
        self.dac2.set_voltage(int(dac2out)) 
 
    # PID Control Algorithm 
    def pid_control(self, set_point): 
    
        # PID Contorl    
 
        delta_t = self.pid_smp_tm 
        self.sp_lft = set_point[0] 
        self.sp_rht = set_point[1] 
 
        pw_lft = self.pl.pulse_width()  # in us 
        pw_rht = self.pr.pulse_width() 
 
        # print("pw_lft = %f\tpw_rht = %f" % (pw_lft, pw_rht)) 
 
        if pw_lft > 0: 
            freq_lft = 1 / ((pw_lft / 100000.0) * 2)  # in Hz 
        else: 
            freq_lft = 0.0 
 
        if pw_rht > 0: 
            freq_rht = 1 / ((pw_rht / 100000.0) * 2)  # in Hz 
        else: 
            freq_rht = 0.0 
 
        rpm_lft = 15.0 * freq_lft 
        rpm_rht = 15.0 * freq_rht 
        self.pv_lft = rpm_lft 
        self.pv_rht = rpm_rht 
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        self.e_lft = self.sp_lft - self.pv_lft 
        self.e_rht = self.sp_rht - self.pv_rht 
 
        # print("e_lft = %f\te_rht = %f" % (self.e_lft, self.e_rht)) 
 
        # calculate starting on second cycle 
        if self.first_pid_lp == False: 
 
            self.dpv_lft = -(self.pv_lft - self.pv_p_lft)/delta_t 
            self.dpv_rht = -(self.pv_rht - self.pv_p_rht)/delta_t 
 
            self.ie_lft = self.ie_p_lft + self.e_lft * delta_t 
            self.ie_rht = self.ie_p_rht + self.e_rht * delta_t 
 
        else: 
            self.first_pid_lp = False 
 
        self.P_lft = self.Kp * self.e_lft 
        self.P_rht = self.Kp * self.e_rht 
 
        self.I_lft = self.Ki * self.ie_lft 
        self.I_rht = self.Ki * self.ie_rht 
 
        self.D_lft = self.Kd * self.dpv_lft 
        self.D_rht = self.Kd * self.dpv_rht 
 
        self.op_lft = self.P_lft + self.I_lft + self.D_lft 
        self.op_rht = self.P_rht + self.I_rht + self.D_rht 
 
        # print("op = %f = %f + %f + %f" %(self.op, self.P, self.I, self.D)) 
 
        if self.op_lft > self.op_hi:  # check upper limit 
            self.op_lft = self.op_hi 
            self.ie_lft = self.ie_lft - self.e_lft * delta_t # anti-reset windup 
        if self.op_lft < self.op_lo:  # check lower limit 
            self.op_lft = self.op_lo 
            self.ie_lft = self.ie_lft - self.e_lft * delta_t # anti-reset windup 
 
        if self.op_rht > self.op_hi:  # check upper limit 
            self.op_rht = self.op_hi 
            self.ie_rht = self.ie_rht - self.e_rht * delta_t # anti-reset windup 
        if self.op_rht < self.op_lo:  # check lower limit 
            self.op_rht = self.op_lo 
            self.ie_rht = self.ie_rht - self.e_rht * delta_t # anti-reset windup 
         
        # calculate amature voltage which relates to the PID output 
        Va_lft = self.op_lft * self.Kpwm 
        Va_rht = self.op_rht * self.Kpwm 
 
        # send the Va to a DAC so that it generates an output to the motor 
controller 
        self.dac_handler(Va_lft, Va_rht) 
 
        self.ie_p_lft = self.ie_lft 
        self.ie_p_rht = self.ie_rht 
 
        self.pv_p_lft = self.pv_lft 
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        self.pv_p_rht = self.pv_rht 
 
    # clean up 
    def close(self): 
 
        HsensorHandler.close(self) 
        self.dac.set_voltage(0) 
        self.dac2.set_voltage(0) 
        print("\nDACs are cleaned up.\n") 
        time.sleep(1) 
 
 
#################################################### 
# RESERVED FOR TCP-IP CLASS 
#################################################### 
 
 
class Tcpip: 
 
    def __init__(self, ip, port): 
 
        # Data 
        self.request = '' 
        self.request_p = '' 
        self.ask = '' 
 
        self.x = [0.0, 0.0, 0.0]     # Added Array value location 2 
 
        self.TCP_SERVER_PAUSE = 0.5 
        self.TCP_SERVER_TRANS_PAUSE = 0.004 
 
        self.first_receive = False 
 
        # define host ip: Rpi's IP 
        self.HOST_IP = ip 
        self.HOST_PORT = port 
        print("Starting socket: TCP...") 
        time.sleep(self.TCP_SERVER_PAUSE) 
 
        # create socket object:socket=socket.socket(family,type) 
        self.server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
        # self.server.setsockopt(socket.SOL_SOCKET,socket.SO_RCVTIMEO, 
struct.pack('LL',0.005,0)) 
        host_addr = (self.HOST_IP, self.HOST_PORT) 
        print("TCP server created @ %s:%d!" %(self.HOST_IP, self.HOST_PORT) ) 
        time.sleep(self.TCP_SERVER_PAUSE) 
 
        # bind socket to addr:socket.bind(address) 
        self.server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) 
        self.server.bind(host_addr) 
        print('Socket bind complete.') 
        time.sleep(self.TCP_SERVER_PAUSE) 
 
        # listen connection request:socket.listen(backlog) 
        self.server.listen(5) 
        print('Socket now listening...\n') 
        time.sleep(self.TCP_SERVER_PAUSE) 
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        # waiting for connection in main loop 
        while True: 
            print("Connecting to the client...") 
            time.sleep(self.TCP_SERVER_PAUSE) 
            (self.client), (client_ip, client_port) = (self.server).accept() 
            print("Connection accepted from %s:%s.\n" %(client_ip, client_port)) 
            time.sleep(self.TCP_SERVER_PAUSE) 
            self.time_0 = datetime.utcnow() 
            break 
 
    def data_trans(self, runtime, spd_ctrl_status, str_ctrl_status): 
 
        act_spd = [spd_ctrl_status[0], spd_ctrl_status[1]]  # actual motor speed 
in the sequence of left, right 
        des_spd = spd_ctrl_status[2] 
        pid_para = [spd_ctrl_status[3], spd_ctrl_status[4], spd_ctrl_status[5]] 
        cur_loc = str_ctrl_status[0] 
        cur_ang = str_ctrl_status[1] 
        des_loc = str_ctrl_status[2] 
        des_ang = str_ctrl_status[3] 
        idx_end = 0     # looking up index for '#' (ending) from the received 
string 
        idx_com = 0     # looking up index for ',' (comma) from the received 
string 
        idx_star = 0    # looking up index for '*' (star) from the received string 
 
        # req = ''        # temporary variable for self.request 
        # i = 0           # loop counter 
        # 0 - ask = 'S', indicating the server has received the set point speed 
values 
        # 1 - Non-legal receiving (could either be not including '#' or not 
receiving anything) 
        # 2 - ask = speeds (at first check if server receive 'Q#') 
        # 3 - ask = 'S', indicating the server has received the desired steering 
location value 
        flag = 0 
 
        # receive & send 
        for i in range(1): 
 
            delta_time = (datetime.utcnow() - self.time_0) 
            tm = delta_time.seconds + delta_time.microseconds*1.0e-6 
            if tm > 10: 
                return -1 
 
            self.client.setblocking(0) 
            try: 
                self.request = self.client.recv(64) 
                self.client.setblocking(1) 
            except Exception: 
                flag = 1 
                break 
            # Check if the string includes ending symbol '#' 
            if self.request.count('#'): 
                idx_end = self.request.index('#') 
                # flag = 0 
            else: 
                self.request = '' 
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                flag = 1 
                break 
            # Check if the string includes ',' which means set points are received 
            if self.request.count(','): 
                idx_com = self.request.index(',') 
                flag = 0 
            elif self.request.count('*'): 
                idx_star = self.request.index('*')  # Added 
                flag = 3 
            else: 
                flag = 2 
                break 
 
        if flag == 0: 
            req = self.request[:idx_end] 
            try: 
                self.x[0] = float(req[:idx_com]) 
                self.x[1] = float(req[idx_com+1:]) 
                self.ask = 'S' 
            except Exception: 
                self.x[0] = 0.0 
                self.x[1] = 0.0 
                self.x[2] = 1100 
                self.ask = '' 
                # print("Server Error: Receiving wrong values!") 
            try: 
                self.client.send(str(self.ask)) 
            except Exception: 
                self.ask = '' 
                # print("Server Error: Sending 'S' in error!") 
 
        elif flag == 3: 
            req = self.request[:idx_end] 
            try: 
                self.x[2] = float(req[idx_star+1:]) 
                self.ask = 'S' 
            except Exception: 
                self.x[2] = 0.0 
                self.ask = '' 
            try: 
                self.client.send(str(self.ask)) 
            except Exception: 
                self.ask = '' 
 
        elif flag == 1: 
            self.request = '' 
            self.ask = '' 
        elif flag == 2: 
            req = self.request[:idx_end] 
 
            try: 
                # Check if the string includes 'Q', which means actual speeds are 
requested 
                if req == 'QA': 
                    self.ask = str(cur_ang) 
                    self.client.send(str(self.ask)) 
                elif req == 'QS': 
                    self.ask = str(act_spd[0]) + ',' + str(act_spd[1]) 
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                    self.client.send(str(self.ask)) 
                elif req.count('Q'): 
                    self.ask = str(runtime) + ',' + str(act_spd[0]) + ',' + 
str(act_spd[1]) + ',' + \ 
                               str(des_spd) + '*' + str(cur_loc) + '*' + 
str(cur_ang) + '*' + \ 
                               str(des_loc) + '*' + str(des_ang) 
                    self.client.send(str(self.ask)) 
                # Check if the string includes 'Q', which means pid parameters are 
requested 
                elif req.count('D'): 
                    self.ask = str(pid_para[0]) + ',' + str(pid_para[1]) + ',' + 
str(pid_para[2]) 
                    self.client.send(str(self.ask)) 
                # If received 'P', exit 
                elif req.count('P'): 
                    self.ask = '' 
                    return 1 
                # Check the first time that receives the heart pack 
                elif req.count('H'): 
                    self.first_receive = True 
                    self.ask = 'K' 
                    self.time_0 = datetime.utcnow() 
                    self.client.send(str(self.ask)) 
            except Exception: 
                pass 
 
        return 1    # Tcpip Works normally 
 
    def get_request(self): 
         
        return self.request 
 
    def get_ask(self): 
 
        return self.ask 
 
    def get_set_point(self): 
 
        return self.x 
 
    def close(self): 
         
        self.client.close() 
        self.server.close() 
        print("TCP-IP closed.\n") 
        time.sleep(1) #Added sections 
 
 
#################################################### 
# This class basically fixes the pwm reading problem 
#################################################### 
 
 
class NewSpdCtrl(SpdCtrl): 
 
    def __init__(self, pi, gpio_lft, gpio_rht, dac_lft, dac_rht): 
 



 

130 

        SpdCtrl.__init__(self, pi, gpio_lft, gpio_rht, dac_lft, dac_rht) 
 
        # Variables 
        self.spd_check_pt = [0.0, 0.0]       # Left and right 
        self.spd_check_pt_p = [0.0, 0.0]     # _p means previous 
        self.tm_check_pt = [0.0, 0.0] 
        self.tm_check_pt_p = [0.0, 0.0]       # _p means previous 
        self.tm_repeat = [0.0, 0.0] 
        self.turns = [0, 0]             # 0 for previous, 1 for recent 
 
        # Flags 
        self.counting_end = True  # if true, stop counting repeat time 
        self.first_pwm_adjustment_loop = True 
 
    def refresh_speed_controller(self, set_point, recent_speed): 
 
        # PID Parameters 
        self.Kpwm = 48.0 / 4096.0 
        self.Kp = 0.840  # Initial Kp value is 0.840 (0, 1.8, 0.002) 
        self.Ki = 2.02  # Initial Ki value is 2.02  (0, 3.2, 0.002) 
        self.Kd = 0.008  # Initial Kd value is 0.008 (0, 0.2, 0.0002) 
 
        # PID Parameters (Left) 
        # self.op_lft = 0.0  # controller output 
        self.sp_lft = set_point[0]  # Set Point 
 
        self.pv_lft = recent_speed[0]  # process variable 
 
        self.e_lft = 0.0  # error 
        self.ie_lft = 0.0  # integral of the error 
        self.dpv_lft = 0.0  # derivative of the pv 
        self.P_lft = 0.0  # proportional 
        self.I_lft = 0.0  # integral 
        self.D_lft = 0.0  # derivative 
        self.sp_lft = 0.0  # set point 
 
        self.pv_p_lft = recent_speed[0]  # previous value of pv 
        self.ie_p_lft = 0.0  # previous value of ie 
 
        # PID Parameters (Right) 
        # self.op_rht = 0.0  # controller output 
        self.sp_rht = set_point[1]  # Set Point 
 
        self.pv_rht = recent_speed[1]  # process variable 
 
        self.e_rht = 0.0  # error 
        self.ie_rht = 0.0  # integral of the error 
        self.dpv_rht = 0.0  # derivative of the pv 
        self.P_rht = 0.0  # proportional 
        self.I_rht = 0.0  # integral 
        self.D_rht = 0.0  # derivative 
        self.sp_rht = 0.0  # set point 
 
        self.pv_p_rht = recent_speed[1]  # previous value of pv 
        self.ie_p_rht = 0.0  # previous value of ie 
 
        # Upper and Lower limits on OP 
        self.op_hi = 409.6 
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        self.op_lo = 0 
 
        # PID Sample Time 
        self.pid_smp_tm = 0.001  # 1ms 
 
        # PID loop flags 
        self.first_pid_lp = True 
 
        # Initialize DAC 
        # self.dac.set_voltage(0) 
        # self.dac2.set_voltage(0) 
 
        # NewSpdCtrl variables 
        self.spd_check_pt = [0.0, 0.0]  # Left and right 
        self.spd_check_pt_p = [0.0, 0.0]  # _p means previous 
        self.tm_check_pt = [0.0, 0.0] 
        self.tm_check_pt_p = [0.0, 0.0]  # _p means previous 
        self.tm_repeat = [0.0, 0.0] 
        self.turns = [0, 0]  # 0 for previous, 1 for recent 
 
        # NewSpdCtrl flags 
        self.counting_end = True  # if true, stop counting repeat time 
        self.first_pwm_adjustment_loop = True 
 
    def fix_pwm_reading(self, sp, speed, tm, lft_or_rht): 
 
        if self.turns[lft_or_rht] == 0: 
            self.tm_check_pt_p[lft_or_rht] = tm 
            self.spd_check_pt_p[lft_or_rht] = speed 
            self.turns[lft_or_rht] = 1 
        else: 
            self.tm_check_pt[lft_or_rht] = tm 
            self.spd_check_pt[lft_or_rht] = speed 
            self.turns[lft_or_rht] = 0 
 
        if self.first_pwm_adjustment_loop: 
            self.first_pwm_adjustment_loop = False 
            self.counting_end = True 
        else: 
            for i in range(1): 
                if self.spd_check_pt[lft_or_rht] != 
self.spd_check_pt_p[lft_or_rht]: 
                    self.counting_end = True 
                else: 
                    tm_r = self.tm_check_pt[lft_or_rht] 
                    tm_p = self.tm_check_pt_p[lft_or_rht] 
                    self.tm_repeat[lft_or_rht] = self.tm_repeat[lft_or_rht] + 
abs(tm_r - tm_p) 
                    if self.spd_check_pt[lft_or_rht] == 0: 
                        self.counting_end = True 
                        break 
 
                    self.counting_end = False 
 
                    # if self.tm_repeat[lft_or_rht] > 0.5 * (1 / 
(self.spd_check_pt[lft_or_rht] / 60.0)): 
                    if self.tm_repeat[lft_or_rht] > 0.35: 
                        #if sp >= 30:  # Check if spd command less than 20 RPM 
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                        #    self.counting_end = True 
                        #else: 
                        self.counting_end = True 
 
                        self.refresh_left_pwm_reader() 
                        self.refresh_right_pwm_reader() 
                        self.refresh_speed_controller([0, 0], [0, 0]) 
 
        if self.counting_end: 
            self.tm_repeat[lft_or_rht] = 0 
 
 
#################################################### 
# This class integrates my motor speed control part 
# to Corey's steering control code 
#################################################### 
 
 
class Integrate: 
 
    def __init__(self, _pi): 
 
        # GPIOs 
        self.THROTTLE = 21  # Microswitch 
        self.EMERGENCY = 12  # Emergency Brake Output 
        self.REVERSE = 16 
        self.PWM_GPIO2 = 19  # CH5 switch 
        self.PWM_GPIO3 = 22  # UP-DOWN CHANNEL 3 (LEFT JOYSTICK) 
        self.REVERSESIGN = 23  # Needs to be changed because it'll be used for 
speed control 
        self.BRK1_GPIO = 18 
        self.BRK2_GPIO = 17 
        self.BRKHALL_GPIO = 20 
        self.STRACT1_GPIO = 25  # Steering H-Bridge signal 1 
        self.STRACT2_GPIO = 26  # Steering H-Bridge signal 2 
 
        self.SPDCONTROL_LFT = 13  # PWM GPIO for speed control (Right: 23; Left: 
13) 
        self.SPDCONTROL_RHT = 23  # PWM GPIO for speed control (Right: 23; Left: 
13) 
        self.ABrake = 20  # Testing brake mod 
 
        # Logging and Debugging 
        logging.basicConfig(filename='/mnt/bus/logs/log.txt', level=logging.INFO) 
 
        # Import ADC for Steering Slide Pot 
        self.adc = Adafruit_ADS1x15.ADS1015() 
 
        # Variables and Constants 
        self.k = 10  # Forward turning constant 
        self.kr = 10  # Reverse turning constant 
        self.SAMPLE_TIME = 0.01  # Adjust higher to slow down "print" time to 
console for debugging 
        self.x = 0  # Used for countdown timer to shutdown program 
        self.var = 1  # For infinite loop 
        self.c = 3  # Shutdown timer length 
        self.DS = [0.0, 0.0]    # motor speed set points 
        self.DS_p = [0.0, 0.0]  # Previous motor speed set points 
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        self.tm = 0.0       # Timer 
        self.tm_0 = None    # timer beginning stamp 
        self.tm_p = 0.0    # Previous time 
        self.dt = None      # time period 
        self.tm_1 = None    # timer ending stamp 
        self.i = 0  # Loop counter 
        self.clt_st = 0  # Client Status 
 
        # Flags 
        self.time_stamp = False 
        self.first_sp_cpr = True  # the first comparison about set point speeds 
 
        # Variables and constants for fixing pwm reading problem 
        self.lft_spd = [0.0, 0.0]  # left speed check point for zero speed command 
([0] is previous, [1] is now) 
        self.rht_spd = [0.0, 0.0] 
        self.lft_timeout_check = [0.0, 0.0]  # left motor time check point for 
zero speed command timeout 
        self.rht_timeout_check = [0.0, 0.0] 
        self.lft_tm_repeat = 0.0  # left motor time period that the speeds have 
become the same 
        self.rht_tm_repeat = 0.0 
 
        # Flags for fixing pwm reading program 
        self.spd_check = 0  # Reference for previous or recent speed, relating to 
sft_spd and rht_spd 
 
        # PWM values 
        self.EBakMid = 1200  # Since the ebrake is a switch this value is the 
middle value to deteremine on/off. 
 
        self.BRKMIN = 1330 
        self.BRKHALL = 0 
        self.BRKHALLSTR = self.BRKMIN  # BRKHALL start value 
        self.BRKSTR = 1300 
        self.BRKPOS = 0 
 
        self.BrkReset = 160 
        self.Brkhall = 160 
        self.BrkStop = 0 
 
        # Flag for triggering E-Break 
        self.e_break_on = False 
 
        # steering constants for angle-bits conversion 
        self.A1 = 135606 
        self.A2 = 55800 
        self.B = 411.72 
        self.K = -0.0621 
        self.Theta0 = 73.0 
 
        # steering variables 
        self.GAIN = 1 
        self.d = 0  # Used as a distance from current to desired 
        self.dv = 0  # Distance direction 
        self.dpast = 0 
        self.PWM = 0 
        self.DA = 0  # desired angle 
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        self.DL = self.__angle_to_bits(self.DA)  # Desired location 
        self.PPWM = 0  # Past PWM used for optimization by not having to setting 
same PWM value every loop 
        self.looping = True 
        self.MAX = 1550 
        self.MIN = 350 
        self.BOOSTCOUNTER = 100 
        self.PWMBOOST = 130  # Used to get stuck actuator moving BUT IS ALSO 
MINIMUM USABLE PWM 
 
        # TCP Socket ip and port 
        self.ip = "192.168.1.2" 
        self.port = 4869 
 
        # PI 
        self.pi = _pi 
 
        # DAC config 
        self.dac = Adafruit_MCP4725.MCP4725(address=0x62, busnum=1)  # i2c address 
(address = 0x62) left motor 
        self.dac2 = Adafruit_MCP4725.MCP4725(address=0x63, busnum=1)  # right 
motor 
        self.dac3 = Adafruit_MCP4725.MCP4725(address=0x60, busnum=1)  # Variable 
Regen Braking 
 
        # PWM Readers 
        self.p2 = reader(self.pi, self.PWM_GPIO2)  # E-Brake 
        # p3 = reader(pi, PWM_GPIO3)  # Throttle 
 
        # GPIO initialize 
        GPIO.setmode(GPIO.BCM) 
        GPIO.setup(self.EMERGENCY, GPIO.OUT) 
        GPIO.output(self.EMERGENCY, GPIO.LOW) 
        GPIO.setup(self.REVERSE, GPIO.OUT) 
        GPIO.output(self.REVERSE, GPIO.LOW) 
        GPIO.setup(self.REVERSESIGN, GPIO.OUT) 
        GPIO.output(self.REVERSESIGN, GPIO.LOW) 
        GPIO.setup(self.THROTTLE, GPIO.OUT) 
        GPIO.setup(self.ABrake, GPIO.OUT) 
        GPIO.output(self.ABrake, GPIO.LOW) 
 
        GPIO.setup(self.BRK1_GPIO, GPIO.OUT) 
        GPIO.setup(self.BRK2_GPIO, GPIO.OUT) 
 
        GPIO.setup(self.STRACT1_GPIO, GPIO.OUT)  # Sets up pin 25 
        GPIO.output(self.STRACT1_GPIO, GPIO.LOW)  # Sets pin 25 to LOW 
        GPIO.setup(self.STRACT2_GPIO, GPIO.OUT)  # Sets up pin 26 
        GPIO.output(self.STRACT2_GPIO, GPIO.LOW)  # Sets pin 26 to LOW 
 
        # DAC initialize 
        self.dac.set_voltage(0)  # Start DAC's at 0V and wait 3 seconds 
        self.dac2.set_voltage(0) 
        self.dac3.set_voltage(0) 
        GPIO.output(self.REVERSESIGN, GPIO.LOW) 
        sleep(2) 
 
        # Add TRIM center code. 
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        GPIO.output(self.THROTTLE, GPIO.HIGH)  # Starts in forward 
        GPIO.output(self.REVERSE, GPIO.LOW) 
 
        # steering initialize 
        self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, 0) 
        self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, 0) 
        self.adc.start_adc(0, gain=self.GAIN) 
        self.CurrentLocation = self.adc.get_last_result() 
        self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation) 
        print("Steering location starting at {}".format(self.CurrentLocation)) 
        print("Front wheel angle starting at {}".format(self.CurrentAngle)) 
        logging.info("PROGRAM RESTARTED! Starting Location = 
{}".format(self.CurrentLocation)) 
 
        # thread list 
        self.threads = [] 
        self.thread_steering_controller = None 
        self.thread_motor_speed_controller = None 
        self.thread_tcp_communication = None 
 
        # flag for stopping all threads 
        self.stop_all_threads = False 
 
        # others 
        self.tcp = None 
        self.spd = None 
        self.pid_para = None 
 
    def init_controller(self): 
 
        GPIO.output(self.BRK1_GPIO, GPIO.HIGH) 
        GPIO.output(self.BRK2_GPIO, GPIO.LOW) 
        print("Extending Actuator") 
        time.sleep(3) 
        GPIO.output(self.BRK1_GPIO, GPIO.LOW) 
        GPIO.output(self.BRK2_GPIO, GPIO.LOW) 
 
        print("Centralizing steering actuator") 
        self.__steering_control_unit() 
        self.CurrentLocation = self.adc.get_last_result() 
        self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation) 
        print("Now steering location is at {}".format(self.CurrentLocation)) 
        print("Now well angle is at {}".format(self.CurrentAngle)) 
 
        self.tcp = Tcpip(self.ip, self.port) 
        self.spd = NewSpdCtrl(self.pi, self.SPDCONTROL_LFT, self.SPDCONTROL_RHT, 
self.dac, self.dac2) 
        self.pid_para = self.spd.get_pid_parameters() 
        print("\n") 
        print('Kp = {}'.format(self.pid_para[0])) 
        print('Ki = {}'.format(self.pid_para[1])) 
        print('Kd = {}'.format(self.pid_para[2])) 
 
    def start_timer(self): 
 
        self.tm = 0 
        self.tm_0 = datetime.utcnow() 
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    def __steering_control_unit(self): 
 
        self.CurrentLocation = self.adc.get_last_result() 
        self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation) 
        # self.DL = self.set_point[2] 
        # print("DL={}".format(self.DL)) 
        self.looping = True 
        self.PWMBOOST = 130  # This reset the PWMBOOST value everytime so they our 
minimums stay consistent 
        # print("Currently at {}".format(self.CurrentLocation)) 
        logging.info("Starting Location = {}".format(self.CurrentLocation)) 
        if self.DL > self.MAX: 
            self.DL = self.MAX 
            # print("Maximum = {}".format(self.MAX)) 
        if self.DL < self.MIN: 
            self.DL = self.MIN 
            # print("Minimum = {}".format(self.MIN)) 
        logging.info("Desired Location = {}".format(self.DL)) 
 
        while self.looping == True: 
 
            try: 
                self.CurrentLocation = self.adc.get_last_result() 
                self.CurrentAngle = self.__bits_to_angle(self.CurrentLocation) 
            except Exception: 
                pass 
            self.dv = (self.CurrentLocation - self.DL) 
            self.d = abs(self.dv) 
            if self.d > 150: 
                self.PWM = 250 
            if 150 > self.d > 50: 
                self.PWM = int((6 / 5) * self.d + 70) 
            if self.d < 50: 
                self.PWM = self.PWMBOOST 
                if abs(self.d - self.dpast) < 5: 
                    self.BOOSTCOUNTER = self.BOOSTCOUNTER - 1 
                    if self.BOOSTCOUNTER == 0: 
                        self.PWMBOOST = self.PWMBOOST + 5 
                        self.BOOSTCOUNTER = 100 
                        # print("Rasing PWM since actuator isn't moving!") 
            if self.PWM != self.PPWM: 
                if self.dv < 0: 
                    self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, self.PWM) 
                    self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, 0) 
                if self.dv > 0: 
                    self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, self.PWM) 
                    self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, 0) 
                self.PPWM = self.PWM 
            if self.d < 1: 
                self.pi.set_PWM_dutycycle(self.STRACT1_GPIO, 0) 
                self.pi.set_PWM_dutycycle(self.STRACT2_GPIO, 0) 
                self.looping = False 
            self.dpast = self.d 
        # print("d={}".format(self.d)) 
        # print("Ending at {}".format(self.CurrentLocation)) 
        logging.info("Ending Location = {}".format(self.CurrentLocation)) 
 
    def steering_control(self): 
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        # Y = -.0621x+421.72 
        # Min = 400bits = 15 5/8in * 25.4 mm 
        # Max = 1550 = 12 13/16in 
 
        while True: 
 
            self.__steering_control_unit() 
 
            if self.stop_all_threads: 
                break 
 
            sleep(0.005) 
 
    def speed_control(self): 
 
        while True: 
 
            while self.e_break_on: 
                sleep(0.001) 
 
            if self.first_sp_cpr: 
                self.first_sp_cpr = False 
            else: 
                if (self.DS[0] != self.DS_p[0]) or (self.DS[1] != self.DS_p[1]): 
                    self.spd.refresh_speed_controller( 
                        self.DS, 
                        [ 
                            self.spd.read_left_motor_speed(), 
                            self.spd.read_right_motor_speed() 
                        ] 
                    ) 
                    # self.first_sp_cpr = True 
 
            self.spd.pid_control([self.DS[0], self.DS[1]]) 
 
            self.spd.fix_pwm_reading(self.DS[0], self.spd.read_left_motor_speed(), 
self.tm, 0) 
            self.spd.fix_pwm_reading(self.DS[1], 
self.spd.read_right_motor_speed(), self.tm, 1) 
 
            self.DS_p[0] = self.DS[0] 
            self.DS_p[1] = self.DS[1] 
 
            if self.stop_all_threads: 
                break 
 
            sleep(0.001) 
 
    def start_e_brake(self): 
 
        while True: 
 
            while self.p2.pulse_width() > self.EBakMid: 
 
                self.e_break_on = True 
 
                # Electrical Breaking 
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                GPIO.output(self.EMERGENCY, GPIO.HIGH)  # E-Brake ON 
 
                # Physical Braking 
                while self.Brkhall > self.BrkStop: 
                    GPIO.output(self.BRK1_GPIO, GPIO.LOW) 
                    GPIO.output(self.BRK2_GPIO, GPIO.HIGH) 
                    self.Brkhall = self.Brkhall - 1 
                    sleep(0.01) 
                    print("HALL {}".format(self.Brkhall)) 
                    self.time_stamp = True 
 
                GPIO.output(self.BRK1_GPIO, GPIO.LOW) 
                GPIO.output(self.BRK2_GPIO, GPIO.LOW) 
 
                # self.DA = 0 
                # self.DL = self.__angle_to_bits(self.DA) 
                self.spd.pid_control([0, 0]) 
 
            while self.Brkhall < self.BrkReset: 
                GPIO.output(self.BRK1_GPIO, GPIO.HIGH) 
                GPIO.output(self.BRK2_GPIO, GPIO.LOW) 
                self.Brkhall = self.Brkhall + 1 
                sleep(0.01) 
                print("hall{}".format(self.Brkhall)) 
 
            GPIO.output(self.BRK1_GPIO, GPIO.LOW) 
            GPIO.output(self.BRK2_GPIO, GPIO.LOW) 
 
            GPIO.output(self.EMERGENCY, GPIO.LOW)  # E-Brake OFF 
 
            self.e_break_on = False 
 
            if self.stop_all_threads: 
                break 
 
    def tcp_communication(self): 
 
        while True: 
 
            self.clt_st = self.tcp.data_trans( 
                float(self.tm_p), 
                [ 
                    self.spd.read_left_motor_speed(), 
                    self.spd.read_right_motor_speed(), 
                    self.DS[0], 
                    self.spd.get_pid_parameters()[0], 
                    self.spd.get_pid_parameters()[1], 
                    self.spd.get_pid_parameters()[2] 
                ], 
                [ 
                    self.CurrentLocation, 
                    self.CurrentAngle, 
                    self.DL, 
                    self.DA 
                ] 
            ) 
 
            # DS, DA are desired values obtained from laptop 
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            self.DS = [self.tcp.get_set_point()[0], self.tcp.get_set_point()[1]] 
            self.DA = self.tcp.get_set_point()[2] 
 
            # Dl is converted form DA 
            self.DL = self.__angle_to_bits(self.DA) 
 
            if self.clt_st == -1 or self.stop_all_threads: 
                self.stop_all_threads = True 
                break 
            sleep(0.01) 
 
    def __angle_to_bits(self, angle): 
 
        # -411.72 
        # bits = (math.sqrt(135606 - 55800 * math.cos(math.pi * (angle + 73.0) / 
180.0)) - 411.72) / -0.0621 
        bits = (math.sqrt(self.A1 - self.A2 * math.cos(math.pi * (-angle + 
self.Theta0) / 180.0)) - self.B) / self.K 
        return bits 
 
    def __bits_to_angle(self, bits): 
 
        # angle = int((math.acos((135606 - math.pow((411.72 - 0.0621 * bits), 2)) 
/ 55800) * (180.0/math.pi)) - 73.0) 
        angle = -1*int( 
            (math.acos((self.A1 - math.pow((self.B + self.K * bits), 2)) / 
self.A2) * (180.0 / math.pi)) - self.Theta0 
        ) 
        return angle 
 
    def run_timer(self): 
 
        print( 
                "%f\t%f\t%f\t%d\t%f\t%f\t%f\t%f\t%d\t%f\t%d" % 
                ( 
                    self.tm, 
                    self.spd.read_left_motor_speed(), 
                    self.spd.read_right_motor_speed(), 
                    self.DS[0], 
                    self.spd.get_pid_parameters()[0], 
                    self.spd.get_pid_parameters()[1], 
                    self.spd.get_pid_parameters()[2], 
                    self.CurrentLocation, 
                    self.CurrentAngle, 
                    self.DL, 
                    self.DA 
                ) 
        ) 
        self.tm_1 = datetime.utcnow() 
        self.dt = self.tm_1 - self.tm_0 
        self.tm_p = self.tm 
        self.tm = self.dt.seconds + self.dt.microseconds * 1.0e-6 
 
    def get_flag_stop_all_threads(self): 
 
        return self.stop_all_threads 
 
    def close(self): 
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        self.stop_all_threads = True 
        self.dac.set_voltage(0)  # Start DAC's at 0V and wait 3 seconds 
        self.dac2.set_voltage(0) 
        self.pi.set_PWM_dutycycle(25, 0) 
        self.pi.set_PWM_dutycycle(26, 0) 
        self.spd.close() 
        self.tcp.close() 
        GPIO.output(self.EMERGENCY, GPIO.HIGH) 
        GPIO.output(self.ABrake, GPIO.HIGH) 
        while self.x < self.c: 
            print("PiBus is stopping in, {} seconds".format(self.c - self.x)) 
            self.x = self.x + 1 
            sleep(1) 
        GPIO.cleanup() 
 
 
#################################################### 
# Main subroutine 
#################################################### 
 
 
if __name__ == "__main__": 
 
    pi = pigpio.pi() 
 
    while True: 
 
        integ = Integrate(pi) 
 
        try: 
 
            integ.init_controller() 
 
            threads = [] 
 
            thread_motor_speed_controller = 
threading.Thread(target=integ.speed_control) 
            threads.append(thread_motor_speed_controller) 
 
            thread_steering_controller = 
threading.Thread(target=integ.steering_control) 
            threads.append(thread_steering_controller) 
 
            thread_tcp_communication = 
threading.Thread(target=integ.tcp_communication) 
            threads.append(thread_tcp_communication) 
 
            thread_e_break = threading.Thread(target=integ.start_e_brake) 
            threads.append(thread_e_break) 
 
            for t in threads: 
                t.setDaemon(True) 
                t.start() 
 
            integ.start_timer() 
 
            while True:                    # Infinite loop 
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########################################################################### 
                integ.run_timer() 
                if integ.get_flag_stop_all_threads(): 
                    break 
                sleep(0.02) 
########################################################################### 
            integ.close() 
            del integ.tcp 
            del integ.spd 
            del integ 
 
        except KeyboardInterrupt: 
 
            integ.close() 
            pi.stop() 
            sys.exit() 
 
            # p.cancel() 

10.1.4 TCP_client_v1_24.py 

This program is run on the laptop that will be connected to the follower module. As of this 

moment, the program connects to the follower module Raspberry Pi and sends a final speed for the 

follower module’s motors to accelerate or decelerate to. An interrupt can be applied at any time to 

disconnect from the follower’s Raspberry Pi. 

 

TCP_client_v1_24.py 

""" 
TCP_client_v1_2.py 
by Chixiang Zhang 
9/22/17 
""" 
 
import socket 
import time 
import sys 
 
""" 
IMPORTANT: 
Do NOT put this program into the RPi. It should be implemented directly on PC/MAC. 
Excecute this program right after TCP_server.py starts running. 
 
This program is a TEST CODE for the client part of the TCP/IP communication, which 
realizes the half-duplex communication between RPi (Server) and PC/MAC (Client). 
In the test code, firstly a counting number which starts from 1000 (increments by 
1)  
is sent from client to server. The server recieves that number, then responds a  



 

142 

counting number starting from 0 (also increments by 1) to the client, which 
recieves  
that number correspondingly.  
 
Sources/Sample Code (NOT written in English, but it's useful to take a look at the 
sample code): 
[1] general way to do TCP/IP  -  
http://blog.sina.com.cn/s/blog_864b79ca0102w795.html 
[2] half-duplex communication - http://www.itnose.net/detail/6359275.html  
""" 
 
 
TCP_CLIENT_PAUSE = 0.5 
TCP_CLIENT_TRANS_PAUSE = 0.01 
#SERVER_OFF = '0' 
#SERVER_ON = '1' 
 
#server_status = SERVER_OFF 
 
#RPi's IP 
#SERVER_IP = "10.100.51.227" 
SERVER_IP = "192.168.1.2" 
SERVER_PORT = 4869 
#SERVER_IP = '10.0.0.111' 
#SERVER_PORT = 5555 
#print("Starting socket: TCP...") 
time.sleep(TCP_CLIENT_PAUSE) 
server_addr = (SERVER_IP, SERVER_PORT) 
 
#creat socket object for client 
client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 
 
# building connection 
while True: 
    try: 
        print("Connecting to server @ %s:%d..." %(SERVER_IP, SERVER_PORT)) 
        time.sleep(TCP_CLIENT_PAUSE) 
        client.connect(server_addr) 
        print("Successfully connected!\n") 
        break 
    except Exception: 
        print("Can't connect to server,try it latter!") 
        time.sleep(TCP_CLIENT_PAUSE) 
        continue 
 
# send 
count = '100,100#' 
#while True: 
for i in range(0,100): 
    ask = "100" + ",100#" 
    client.send(str(ask)) 
    #print("Sending %s to server" %str(ask)) 
    #count = count + 1 
    # recieve 
    response = '' 
    while len(response) == 0:    
        response = client.recv(128) 
    print("%s\n" %str(response)) 
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    ask = "H#" 
    client.send(str(ask)) 
    #print("Sending %s to server" %str(ask)) 
    #count = count + 1 
    # recieve 
    print('a') 
    response = '' 
    while len(response) == 0:    
        response = client.recv(128) 
    #print("%s\n" %str(response)) 
    print('d') 
     
    for j in range(1): 
        time.sleep(0.1) 
        ask = 'Q#' 
        client.send(str(ask)) 
        response = '' 
        while len(response) == 0: 
            response = client.recv(128) 
        print("%s\n" %str(response)) 
 
        print('c') 
 
        ask = 'H#' 
        client.send(str(ask)) 
        print('b') 
        response = '' 
        while len(response) == 0: 
            response = client.recv(128) 
        #print("%s\n" %str(response)) 
 
for k in range(0,500): 
    time.sleep(0.1) 
    ask = '-10,-10#' 
    client.send(str(ask)) 
 
    response = '' 
    while len(response) == 0:    
        response = client.recv(128) 
    print("%s\n" %str(response)) 
 
    ask = "H#" 
    client.send(str(ask)) 
 
    response = '' 
    while len(response) == 0:    
        response = client.recv(128) 
 
#for i in range(0,200): 
#    client.send('P#') 
client.close() 
 
'''    
    try: 
        for i in range(0,10): 
            ask = str(i*10+10) + ",80#" 
            client.send(str(ask)) 
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            #print("Sending %s to server" %str(ask)) 
            #count = count + 1 
            # recieve 
            response = client.recv(128) 
            print("%s\n" %str(response)) 
            time.sleep(3) 
            client.send('Q#') 
            response = client.recv(128) 
            print("%s\n" %str(response)) 
    except Exception: 
        client.close() 
        print("Exception: client closed.") 
        break 
''' 
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10.2 Appendix B—High-Level C++ Program 

10.2.1 Summary 

The high-level C++ program was developed to implement vehicle autonomous tracking. It 

includes a computer vision module, a laser sensor module, a BP neural network model and a 

communication module. The program acquires the visual and distance information from the camera 

and laser sensor, then employs a trained neural network controller to calculate the desired 

translational and rotational velocities of the follower vehicle. Then, the control commands are sent 

to the low-level PID controllers via TCP/IP communication. Meanwhile, the current velocities of 

the vehicle could be sent back to the high-level C++ program via TCP/IP communication. 

10.2.1.1 Main.cpp 

This is the main program and the beginning point of the whole program. 

10.2.1.2 Robot_vision.cpp and robot_vision.h 

The computer vision module. 

10.2.1.3 Robot_laser.cpp and robot_laser.h 

The laser measurement module. 

10.2.1.4 Robot_bp.cpp and robot_bp.h 

The neural network module 

10.2.2 Main.cpp 

#include <iostream> 
#include <fstream> 
#include <ctime> 
#include <cmath> 
#include "robot_util.h" 
#include "robot_laser.h" 
#include "robot_vision.h" 
//#include "robot_bp.h" 
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#include "stdafx.h" 
#define WIN32_LEAN_AND_MEAN 
#include <windows.h> 
#include <winsock2.h> 
#include <ws2tcpip.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <string> 
#include <sstream> 
#include <csignal> 
// Need to link with Ws2_32.lib, Mswsock.lib, and Advapi32.lib 
#pragma comment (lib, "Ws2_32.lib") 
#pragma comment (lib, "Mswsock.lib") 
#pragma comment (lib, "AdvApi32.lib") 
 
using namespace std; 
 
#define DEFAULT_BUFLEN 512 
 
 
double vTrans = 0; // The vehicle's translational velocity, unit: cm/s 
double vRot = 0;   // The vehicles' rotational velocity, unit: degree/s 
 
const int TOTAL_EXECUTION_TIMES = 50000; 
 
const int TOO_CLOSE = 300; // unit:mm 
const int SUPER_CLOSE = 200; 
const int LASER_FAR = 2000; 
const int LASER_NEAR = 1000; 
 
const int MAX_ROT_VEL = 15;  // deg/s 
const int MIN_ROT_VEL = -15; 
const int MAX_VEL = 100;  // cm/s 
const int MIN_VEL = -100; 
 
 
// gains 
const double K_FORWARD_VEL = 0.05;   
const double K_BACKWARD_VEL = 40000; // Change to larger if wanting to back up 
faster (40000 for line) 
const double K_LEFT_ROT_VEL = -0.02; 
const double K_RIGHT_ROT_VEL = -0.02; 
const double K_ADJUST_ROT_VEL = 0.98; 
 
const int VISION_WIDTH = RobotVision::VISION_WIDTH; 
const int VISION_HEIGHT = RobotVision::VISION_HEIGHT; 
const int VISION_LOW = 0.27 * VISION_WIDTH; // 346; 
const int VISION_HIGH = 0.72 * VISION_WIDTH; // 921; 
 
 
 
const int HARD_SLEEP_TIME = 1;  // ms or s? 
 
// Tcp/IP communication setting 
SOCKET ConnectSocket=INVALID_SOCKET; 
char* IPaddress = "192.168.1.2"; 
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char* port = "4869"; 
 
// function delaration 
void readMatrix(char *fileName, double * myMatrix, int rows, int cols); 
void neuralNetwork(double distance, double imageX, int 
left_or_right_by_laser_angle, int * output); 
SOCKET createSocket(char* address, char* port); //creat a socket 
int send(SOCKET ConnectSocket, string stringbuf); // send a string through the 
socket 
string queryData(SOCKET ConnectSocket); // receive a string through the socket 
void sendDesiredVehicleSpeed(double transVel, double rotVel); // transVel: cm/s, 
rotVel: deg/s 
void getCurrentVehicleSpeed(double *pTrans, double *pRot); 
double getVel(); 
double getRotVel(); 
void getWheelSpeed(double *pw1, double *pw2);// Unit: deg/s 
void setVel(double v); 
void setRotVel(double w); 
void stopVehicle(); 
void sig_handler(int sig); 
void testVehicleMotion(); 
void testWheelSpeed(); 
 
// NN Architecture 
const int INPUT_LAYER_NUM = 3; 
const int HIDDEN_LAYER_NUM = 50; 
const int OUTPUT_LAYER_NUM = 5; 
double w[INPUT_LAYER_NUM][HIDDEN_LAYER_NUM]; 
double v[HIDDEN_LAYER_NUM][OUTPUT_LAYER_NUM]; 
 
int main(int argc, char **argv) { 
     
    
    // create the communication channel 
    ConnectSocket = createSocket(IPaddress, port); 
    
   // Test communication with the low-level controller.  
    //testVehicleMotion(); 
  //  testWheelSpeed(); 
  //  return 1; 
 
    ///////////////////////////////////////////////////////////////////////// 
    cv::ocl::setUseOpenCL(false); 
 
    //load the weights of the neural network 
    readMatrix("w_n.txt", &w[0][0], INPUT_LAYER_NUM, HIDDEN_LAYER_NUM); 
    readMatrix("v_n.txt", &v[0][0], HIDDEN_LAYER_NUM, OUTPUT_LAYER_NUM); 
        
 //////////////////////////// 
 RobotLaser laser; 
 RobotVision vision; 
 
    // Initialize laser before depth camera, otherwise it won't be able to 
initialize 
    laser.init(); 
 
    // Initialize vision including camera and cascade detector 
    if (!vision.init("cascade_stop_sign.xml")) { 
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        cout << "error: there was an error when initializing vision component." << 
endl; 
        return 1; 
    } 
  
 // Initilize the vision kalman filter 
 vision.init_kalman_filter(); 
 
 // Laser, Vision, BP variables 
 double laser_distance = 0; 
 double laser_angle_in_degree = 0; 
 double laser_start_angle = -15; 
 double laser_end_angle = 15; 
 double vision_center_x = 0; 
 double rot_vel_increment = 0; 
 double vel_increment = 0; 
 int bp_output[OUTPUT_LAYER_NUM]; 
 bool is_predicted = false; 
 int predicted_counter = 0; 
 int predicted_max = 10; 
 double temp_vision_area = 0; 
 double temp_vision_center_x = 0; 
 double temp_vision_center_y = 0; 
 
 // Initialize laser kalman filter 
 laser.init_kalman_filter(laser_start_angle, laser_end_angle, 
&laser_angle_in_degree); 
 
 // Accessory variables 
 int i = 0; 
 double tmp = 0; 
 
 // Initial 0 speed 
 vTrans=0; 
    vRot = 0; 
 
    cout << "\n\n\n ---------------------------------------\n"; 
    cout << "Start the loop now !!!!!!!!\n\n" << endl; 
 
 while (i < TOTAL_EXECUTION_TIMES) { 
        signal(SIGINT, sig_handler); 
  i++; 
 
     if (false == laser.is_open()) { 
   laser.init(); 
  } 
 
        //get the distance 
  laser_distance = laser.get_distance(laser_start_angle, 
laser_end_angle, &laser_angle_in_degree); 
        cout << "Laser distance= " << laser_distance << " at angle of"<< 
laser_angle_in_degree <<endl; 
             
        //laser_distance = laser.get_distance_on_thread(laser_start_angle, 
laser_end_angle, &laser_angle_in_degree); 
  if (laser_distance <0) { 
            Sleep(HARD_SLEEP_TIME); 
   continue; 
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  } 
 
  if (laser_distance < TOO_CLOSE && laser_distance > SUPER_CLOSE) { 
   stopVehicle(); 
   cout << "The distance is too short, the vehicle is stopped! " 
<< endl; 
   continue; 
  } 
  else if (laser_distance < SUPER_CLOSE)  
        { 
   if (getVel() >= 0) { 
    //setVel(-100);  // the vehcile moves backward 
                stopVehicle(); 
   } 
   cout << "The distance is super close, need to stop the 
vehicle." << endl; 
            continue; 
  } 
 
  // get the vision position 
 
  vision_center_x = 
vision.detect_with_cascade_on_thread(laser_angle_in_degree, &is_predicted); 
     cout << "vision_center=" << vision_center_x << " is_predicted= " << 
is_predicted << endl; 
 
 /* if (is_predicted) { 
   predicted_counter++; 
  } 
 
        // if the visual position is predicted for too many times 
  int look_for_rot_vel = 5; // the rot speed used to search the leader 
vehicle 
  if (predicted_counter > predicted_max) { // the visual object is 
lost, so need to rotate to find it. 
            cout << "Stop sign is lost, rotate the vehicle to find it" << endl; 
            stopVehicle(); 
   while 
(!vision.detect_wtih_cascade_inline(&temp_vision_center_x, &temp_vision_area, 
&temp_vision_center_y)) { 
    if (laser_angle_in_degree > 0) { 
     // laser senses the object is on the left 
     setRotVel(look_for_rot_vel); 
    } 
    else  
                { 
     // laser senses the object is on the right 
     setRotVel(-look_for_rot_vel); 
    } 
    Sleep(50); 
                cout << "rotating to find the visual target. \n"; 
   } 
            cout << "Found the visual target. \n"; 
 
            // once find the visual target, stop rotating and update the Kalman 
filter 
   vision.correct_kalman_filter(temp_vision_center_x, 
temp_vision_center_y); 
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   predicted_counter = 0; 
   continue; 
  } */ 
 
        // New factor, laser_angle_in_degree should be within -120 to 120, make it 
range into 0 to 1 
        int left_or_right_by_laser_angle = laser_angle_in_degree > 0 ? 0 : 1; // 
laser_angle_in_degree / 240 + 0.5; 
 
  // OUTPUT (neuralNetwork): bp_output 
        cout << "NN INPUTs (d,x, theta):" << laser_distance << ", " << 
vision_center_x << ", " << left_or_right_by_laser_angle << endl; 
  neuralNetwork(laser_distance, vision_center_x, 
left_or_right_by_laser_angle, bp_output); 
        cout << "NN outputs: " << "  [0]=" << bp_output[0] << "  [1]=" << 
bp_output[1] << "  [2]=" << bp_output[2] << "  [3]=" << bp_output[3] << "  [4]=" 
<< bp_output[4] << endl; 
  
        // determine rot_vel_increment 
  if (vision_center_x <= VISION_LOW) { 
   rot_vel_increment = (vision_center_x - VISION_LOW) * 
K_LEFT_ROT_VEL; 
  } 
  else if (vision_center_x > VISION_LOW && vision_center_x <= 
VISION_HIGH) { 
   rot_vel_increment = 0; 
  } 
  else { 
   rot_vel_increment = -1.0 * (vision_center_x - VISION_HIGH) * 
K_RIGHT_ROT_VEL; 
  } 
 
        // determine the vel_increment 
  double cur_vel = getVel(); 
  if (cur_vel > 0) { 
   vel_increment = abs(laser_distance) * K_FORWARD_VEL; 
  } 
  else { 
   vel_increment = K_BACKWARD_VEL / abs(laser_distance); 
  } 
 
       
  
        bool is_rotating = false; 
 
  //execute the actions 
  if (bp_output[0] == 1) { 
         
            // Turn left immediately instead of slowly 
        /*    tmp = getRotVel() + rot_vel_increment; 
   if (tmp > MAX_ROT_VEL) { 
    tmp = MAX_ROT_VEL; 
   } 
       
            setRotVel(tmp); // turn left 
   cout << "NN OUTPUT(Action): Turn Left: " << " rotVel= " << tmp 
<< endl; 
            is_rotating = true; */ 
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  } 
 
  if (bp_output[1] == 1) { 
 
            // Turn right immediately instead of slowly 
       /*     tmp = getRotVel() - rot_vel_increment; 
   if (tmp < MIN_ROT_VEL) { 
    tmp = MIN_ROT_VEL; 
   } 
  
   setRotVel(tmp); //turn right 
   cout << "NN OUTPUT(Action): Turn Right: " << " rotVel= " << 
tmp << endl; 
            is_rotating = true; */ 
  } 
 
  /*      if (bp_output[4] == 1) { 
            cout << "bp_output[4] == 1" << endl; 
            if (is_rotating) { 
                // reduce rotVel by factor K 
                tmp = tmp * K_ADJUST_ROT_VEL; 
                setRotVel(tmp); // adjust rotation 
                cout << "NN OUTPUT(Action): Adjust Rotation Speed by " << 
K_ADJUST_ROT_VEL << ": " << " rotVel= " << tmp << endl; 
            } 
        } */ 
 
  if (bp_output[0] == 0 && bp_output[1] == 0) { 
   setRotVel(0); 
   cout << "NN OUTPUT(Action): moveing linearly, no rotation!  
Vel: " << getVel() << endl; 
  } 
 
  if (bp_output[2] == 1) { 
 
   tmp = getVel(); 
   if (tmp > 0) { 
    tmp += vel_increment; 
   } else  
            { 
    tmp = vel_increment;   // ??????????? 
   } 
 
   if (tmp > MAX_VEL) { 
    tmp = MAX_VEL; 
   } 
 
   setVel(tmp); //increase speed 
            Sleep(100); 
   cout << "NN OUTPUT(Action): Increase linear speed. Old Vel=" 
<< getVel() << ", New Vel="<< tmp <<endl; 
  } 
 
  if (bp_output[3] == 1) { 
 
   tmp = getVel(); 
   if (tmp < 0) { 
    tmp -= vel_increment; 
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   } 
   else { 
    tmp = -vel_increment; 
   } 
 
   if (tmp < MIN_VEL) { 
    tmp = MIN_VEL; 
   } 
 
   setVel(tmp); //decrease speed 
            Sleep(1000); 
   cout << "NN OUTPUT(Action): Decrease linear speed. Old Vel=" 
<< getVel() << ", New Vel=" << tmp << endl; 
  } 
 
        Sleep(HARD_SLEEP_TIME); 
        cout << "---------------------------------------\n\n\n"; 
 
 } 
 
 
 // Close Laser 
 laser.close(); 
 
    //close the communication and delete the socket 
    string end = "P#"; 
    send(ConnectSocket, end); 
    shutdown(ConnectSocket, SD_SEND); 
    closesocket(ConnectSocket); 
 
 return 0; 
} 
 
void readMatrix(char *fileName, double * myMatrix, int height, int width) { 
 std::ifstream file(fileName); 
 int count = 0; 
 for (int i = 0; i < height; i++) { 
  for (int j = 0; j < width; j++) { 
   file >> *(myMatrix + count); 
   count = count + 1; 
  } 
 } 
 file.close(); 
} 
 
void neuralNetwork(double distance, double imageX, int 
left_or_right_by_laser_angle, int *output) { 
 double x[INPUT_LAYER_NUM];  //input units; 
 double H[HIDDEN_LAYER_NUM]; //hidden units 
 
 //data pre-processing 
 if (distance > LASER_FAR) { 
        x[0] = 2; // +(distance - LASER_FAR) / distance - 0.5; 
 } 
 else if (distance <= LASER_FAR && distance > LASER_NEAR) { 
        x[0] = 1; // +(distance - LASER_NEAR) / (LASER_FAR - LASER_NEAR) - 0.5; 
 } 
 else { 
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        x[0] = 0; // +(distance - 0) / LASER_NEAR - 0.5; 
 } 
   
 if (imageX >= VISION_HIGH) { 
        x[1] = 2; // +(imageX - VISION_HIGH) / imageX - 0.5; 
 } 
 else if (imageX < VISION_HIGH && imageX > VISION_LOW) { 
        x[1] = 1; // +(imageX - VISION_LOW) / (VISION_HIGH - VISION_LOW) - 0.5; 
 } 
 else { 
        x[1] = 0; // +(imageX - 0) / VISION_LOW - 0.5; 
 } 
 
    // left or right by laser_angle, already make it between 0 and 1 
    x[2] = left_or_right_by_laser_angle; 
 
 //display status 
 cout << "Processed INPUT(NN): distance=" << x[0] << "   " << ", image 
location=" << x[1] << ", left_or_right_by_laser_angle=" << x[2] <<  "\n"; 
 
 // calculate the outputs of the hidden units 
 for (int i = 0; i < HIDDEN_LAYER_NUM; i++) { 
  double sum = 0; 
  for (int j = 0; j < INPUT_LAYER_NUM; j++) { 
   sum = sum + x[j] * w[j][i]; 
  } 
  H[i] = 1 / (1 + exp(0 - sum)); 
 } 
 
 //caculate the outputs of the output layer 
 for (int i = 0; i < OUTPUT_LAYER_NUM; i++) { 
  double sum = 0; 
  for (int j = 0; j < HIDDEN_LAYER_NUM; j++) { 
   sum = sum + H[j] * v[j][i]; 
  } 
  *(output + i) = (int)round(sum); 
 } 
} 
 
 
 
SOCKET createSocket(char* address, char* port) 
{ 
    SOCKET ConnectSocket = INVALID_SOCKET; 
    WSADATA wsaData; 
    struct addrinfo *result = NULL, 
        *ptr = NULL, 
        hints; 
    // Initialize Winsock 
    int iResult; 
    iResult = WSAStartup(MAKEWORD(2, 2), &wsaData); 
    if (iResult != 0) { 
        printf("WSAStartup failed with error: %d\n", iResult); 
        return INVALID_SOCKET; 
    } 
 
    ZeroMemory(&hints, sizeof(hints)); 
    hints.ai_family = AF_UNSPEC; 
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    hints.ai_socktype = SOCK_STREAM; 
    hints.ai_protocol = IPPROTO_TCP; 
 
    // Resolve the server address and port 
    iResult = getaddrinfo(address, port, &hints, &result); 
    if (iResult != 0) { 
        printf("getaddrinfo failed with error: %d\n", iResult); 
        WSACleanup(); 
        return INVALID_SOCKET; 
    } 
 
    // Attempt to connect to an address until one succeeds 
    for (ptr = result; ptr != NULL; ptr = ptr->ai_next) { 
 
        // Create a SOCKET for connecting to server 
        ConnectSocket = socket(ptr->ai_family, ptr->ai_socktype, 
            ptr->ai_protocol); 
        if (ConnectSocket == INVALID_SOCKET) { 
            printf("socket failed with error: %ld\n", WSAGetLastError()); 
            WSACleanup(); 
            return INVALID_SOCKET; 
        } 
 
        // Connect to server. 
        iResult = connect(ConnectSocket, ptr->ai_addr, (int)ptr->ai_addrlen); 
        if (iResult == SOCKET_ERROR) { 
            closesocket(ConnectSocket); 
            ConnectSocket = INVALID_SOCKET; 
            continue; 
        } 
        break; 
    } 
    return ConnectSocket; 
} 
 
int send(SOCKET ConnectSocket, string stringbuf)  // send a string 
{ 
    int iResult; 
    char * sendbuf = new char[stringbuf.length() + 1]; 
    strcpy_s(sendbuf, stringbuf.length() + 1, stringbuf.c_str()); 
    // Send an initial buffer 
    char r[1] = ""; 
    iResult = send(ConnectSocket, sendbuf, (int)strlen(sendbuf), 0); 
    if (iResult == SOCKET_ERROR) { 
        printf("send failed with error: %d\n", WSAGetLastError()); 
        closesocket(ConnectSocket); 
        WSACleanup(); 
        return 0; 
    } 
    //printf("Bytes Sent: %ld\n", iResult); 
    //send by send will cause failing to the second send, 
    //so have to insert a "receive" between 2 "send" in clinet 
    iResult = 0; 
    //while (1) 
    //{ 
    // if (r[0] == '1') 
    //  break; 
    // recv(ConnectSocket, r, 1, 0); 
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    //} 
    //  
    recv(ConnectSocket, r, 1, 0); 
    if (r[0] == 'S') 
    { 
        iResult = 1; 
       // printf("send successfully\n"); 
    } 
    else if(r[0] == 'K') 
        iResult = 1; 
    else { 
        printf("server don't receive\n"); 
    } 
 
    return iResult; 
} 
 
string queryData(SOCKET ConnectSocket)  // receive a string 
{ 
 
    int iResult; 
    char recvbuf[DEFAULT_BUFLEN]; 
    int recvbuflen = DEFAULT_BUFLEN; 
    char *s = "Q#"; 
    string str; 
    iResult = send(ConnectSocket, s, 2, 0); 
    //cout << " query iResult " << iResult << endl; 
    if (iResult == SOCKET_ERROR) { 
        printf("send failed with error: %d\n", WSAGetLastError()); 
        closesocket(ConnectSocket); 
        WSACleanup(); 
        return str; 
    } 
    // Receive until the peer closes the connection 
    do { 
        //cout << "waiting receive queryData  " << endl; 
        iResult = recv(ConnectSocket, recvbuf, recvbuflen, 0); 
        //cout << iResult << endl; 
        if (iResult > 0) { 
            //printf("Bytes received: %d\n", iResult); 
            str = recvbuf; 
            break; 
        } 
        else if (iResult == 0) 
            printf("Connection closed\n"); 
        else 
            printf("recv failed with error: %d\n", WSAGetLastError()); 
 
    } while (iResult > 0); 
    return str; 
} 
 
void setWheelSpeed(double w1, double w2) {  //deg/s 
 
  //  cout << "Dessied W1(deg/s)=" << w1 << "  Desired W2=" << w2 << endl; 
 //   cout << "----------------------------------------------------------------\n" 
<< endl; 
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    //convert from deg/s to RPM 
    w1 = w1 / 6; 
    w2 = w2 / 6; 
 
    // begin to send w1 and w2 
    string sendbuf; 
    sendbuf = to_string(w1) + "," + to_string(w2) + "#"; 
    send(ConnectSocket, sendbuf); 
  
    string heartBag = "H#"; 
    send(ConnectSocket, heartBag); 
    return; 
} 
 
void sendDesiredVehicleSpeed(double transVel, double rotVel)  // units: cm/s, 
deg/s 
{ 
    //the receiving in utf8 will case messed up when show on console 
    //however, it is only a display issue. 
    //system("chcp 65001"); 
 
    cout << "\n\n------------------------------------------------------------" << 
endl; 
    cout << "Desired V=" << transVel << " desired W=" << rotVel << endl; 
  
    //convert v and w into w1 and w2 
    // unit of v: cm/s 
    //unit of w: deg/s 
 
    rotVel = rotVel / 180 * 3.14159; //convert deg/s to radian/s 
    double L = 37.7;  // the distance between two wheels, unit: cm 
    double D = 45.72; // the diameter of the wheels, unit: cm 
 
    double w1 = 1 / D*transVel + L / (2 * D)*rotVel; 
    double w2= 1 / D*transVel - L / (2 * D)*rotVel; 
 
    // convert unit from rad/s to deg/s 
 
    w1 = w1 / 3.14159 * 180; 
    w2 = w2 / 3.14159 * 180; 
 
    //send th desired speeds of two wheels 
    setWheelSpeed(w1, w2); 
 
    return; 
} 
 
 
void getCurrentVehicleSpeed(double *pTrans, double *pRot)  //Units: cm/s, deg/s 
{ 
    double w1, w2; 
    getWheelSpeed(&w1, &w2); 
 
    // convert from deg/s to radian/s 
    w1 = w1 / 180 * 3.14159; 
    w2 = w2 / 180 * 3.14159; 
 
    // get v and w 
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    double L = 37.7;  // the distance between two wheels, unit: cm 
    double D = 45.72; // the diameter of the wheels, unit: cm 
    double v = D / 2 * w1 + D / 2 * w2; 
    double w = D / L*w1 - D / L*w2; 
 
    // convert from radian/s to deg 
    w = w / 3.14159 * 180; 
 
    //cout << "v=" << v << "  w=" << w << endl; 
    (*pTrans) = v; 
    (*pRot) = w; 
     
    
  
    return; 
} 
 
void getWheelSpeed(double *pw1, double *pw2) {   // Unit: deg/s 
     
    string recvBuff = ""; 
    double w1 = 0, w2 = 0; // the velocities of the wheels 
 
    recvBuff = queryData(ConnectSocket); 
    // parse the recvBuff to get w1 and w2 
    // insert code here ..... 
    // ..... 
    // ................... 
    // ....................... 
    int separ = recvBuff.find(','); 
    istringstream istr(recvBuff.substr(0, separ)); 
    istr >> w1; 
    istringstream istr2(recvBuff.substr(separ + 1, recvBuff.length() - separ)); 
    istr2 >> w2; 
 
   // cout << "w1=" << w1 << "  w2=" << w2 << " Unit: RPM" << endl; 
 
    // convert from RPM to deg/s 
    w1 = w1 * 6; 
    w2 = w2 * 6; 
 
    (*pw1) = w1; 
    (*pw2) = w2; 
 
    string heartBag = "H#"; 
    send(ConnectSocket, heartBag); 
 
    return; 
} 
 
double getVel() {   // Unit: cm/s 
    double v, w; 
    getCurrentVehicleSpeed(&v, &w); 
    return v; 
} 
 
double getRotVel() {   // unit: deg/s 
    double v, w; 
    getCurrentVehicleSpeed(&v, &w); 
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    return w; 
} 
 
void setVel(double v) {   // unit: cm/s 
    double tmpV, tmpW; 
 //   getCurrentVehicleSpeed(&tmpV, &tmpW); 
    sendDesiredVehicleSpeed(v, 0); 
    string heartBag = "H#"; 
    send(ConnectSocket, heartBag); 
} 
 
void setRotVel(double w) {  // unit: deg/s 
    double tmpV, tmpW; 
    getCurrentVehicleSpeed(&tmpV, &tmpW); 
    sendDesiredVehicleSpeed(tmpV, w); 
    string heartBag = "H#"; 
    send(ConnectSocket, heartBag); 
} 
 
void stopVehicle() { 
    sendDesiredVehicleSpeed(0, 0); 
    string heartBag = "H#"; 
    send(ConnectSocket, heartBag); 
} 
 
//for keyboard interrupt 
void sig_handler(int sig) 
{ 
    if (sig == SIGINT) 
    { 
        string s = "P#P#P#"; 
        cout << " cccccccccccccccccccccccccccccccccccccccccc" << endl; 
        send(ConnectSocket,s); 
    } 
} 
 
 
void testVehicleMotion() {       ///// Test the communication with the Rasverry PI 
 
    double desiredV = 0, desiredW = 0; // desired v and w 
    double curV = 0, curW = 0;  //current v and w 
    int i = 1; 
 
   
    double w1, w2; 
 
   
    int timeDelay = 10;  // unit: ms 
    int tMax = 10000; // unit:ms 
 
 
    // set a linear speed 
    cout << "\n\n Set new V=60 \n\n"; 
    setVel(60); 
    int t = 0; 
 
    while (t <=tMax ) { 
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        t = t+timeDelay; 
 
        Sleep(timeDelay); 
        getWheelSpeed(&w1, &w2); 
        getCurrentVehicleSpeed(&curV, &curW); 
        cout << t << " w1=" << w1 << " w2=" << w2 << " V=" << curV << " W=" << 
curW<<endl; 
    } 
 //   speed1.close(); 
 
 
    cout << "---------------------------------------" << endl; 
    // stop the vehicle 
    cout << "\n\n Stop the vehicle now \n\n"; 
    stopVehicle(); 
 
    t = 0; 
 
    while (t <= 10000) { 
 
        t = t + timeDelay; 
 
        Sleep(timeDelay); 
        getWheelSpeed(&w1, &w2); 
        getCurrentVehicleSpeed(&curV, &curW); 
        cout << t << " " << "w1=" << w1 << " w2=" << w2 << " v=" << curV << " w=" 
<< curW << endl; 
    } 
   
 
 
   cout << "---------------------------------------" << endl; 
 
   //ofstream speed2("speed2.txt", std::ofstream::trunc); 
   cout << "\n\n Set new V=30 deg/s \n\n"; 
    setVel(30); 
    t = 0; 
    
    while (t<=tMax) { 
 
        t = t+timeDelay; 
 
        Sleep(timeDelay); 
        getWheelSpeed(&w1, &w2); 
        getCurrentVehicleSpeed(&curV, &curW); 
        cout << t << " " <<"w1="<< w1 << " w2=" << w2 << " v=" << curV << " w=" << 
curW << endl; 
    } 
   // speed2.close();*/ 
     cout << "---------------------------------------" << endl; 
 
     //ofstream speed2("speed2.txt", std::ofstream::trunc); 
     cout << "\n\n Set new V=60  \n"; 
   //  setVel(60); 
     t = 0; 
 
     while (t <= tMax) { 
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         t = t + timeDelay; 
 
         Sleep(timeDelay); 
         getWheelSpeed(&w1, &w2); 
         getCurrentVehicleSpeed(&curV, &curW); 
         cout << t << " w1=" << w1 << " w2=" << w2 << " v=" << curV << " w=" << 
curW << endl; 
     } 
     // speed2.close();*/ 
     cout << "---------------------------------------" << endl; 
 
     // stop the vehicle 
     cout << "\n\n stop the vehicle and close communication !!!! \n\n"; 
     stopVehicle(); 
     Sleep(timeDelay); 
 
    //close the communication 
    string end = "P#"; 
    send(ConnectSocket, end); 
    shutdown(ConnectSocket, SD_SEND); 
    closesocket(ConnectSocket); 
    return; 
} 
 
void testWheelSpeed(){ 
    double desiredW[12] = {10,20,30,40,0, 10, 20,30,60,0,100,150}; //RPM 
 
    double t; 
    double tMax =10000; //ms 
    double timeDelay = 10; //ms 
 
    double w1, w2; 
 
    for (int i = 0; i < 12; i++) { 
 
        cout << "\n\n-----------------------------------------------------" << 
endl; 
        cout << "Desired w1 (RPM)=" << desiredW[i] << "  Desired w2 (RPM)=" << 
desiredW[i] << endl; 
        cout << "\n\n-----------------------------------------------------\n" << 
endl; 
         
        w1 = desiredW[i] * 6;  //RPM --> deg/s 
        w2 = desiredW[i] * 6;  //RPM --> deg/s 
        setWheelSpeed(w1, w2); 
  
        t = 0; 
        while (t <= tMax) { 
            t = t + timeDelay; 
            Sleep(timeDelay); 
            getWheelSpeed(&w1, &w2); 
           // cout << t << " w1 (RPM)=" << w1/6 << " w2 (RPM)=" << w2/6 << endl; 
            cout << t <<" "<< w1 / 6 << " " << w2 / 6 << endl; 
        } 
      
 
    } 
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    // stop the vehicle 
    cout << "\n\n stop the vehicle and close communication !!!! \n\n"; 
    stopVehicle(); 
    Sleep(timeDelay); 
 
    //close the communication 
    string end = "P#"; 
    send(ConnectSocket, end); 
    shutdown(ConnectSocket, SD_SEND); 
    closesocket(ConnectSocket); 
    return; 
} 

10.2.3 Robot_vision.h 

#ifndef ROBOT_VISION_H 
#define ROBOT_VISION_H 
 
#include <thread> 
#include <atomic> 
#include "opencv2/objdetect.hpp" 
#include "opencv2/highgui.hpp" 
#include "opencv2/imgproc.hpp" 
#include "opencv2/video/tracking.hpp" 
#include "opencv2/core/ocl.hpp" 
#include <ctime> 
#include <iostream> 
#include <fstream> 
#include "robot_util.h" 
#include "Aria.h" 
#include "ArRobot.h" 
#include "robot_util.h" 
#include <zed/Camera.hpp> 
using namespace std; 
 
class RobotVision { 
private: 
 // MultiThread 
    std::atomic<bool> is_data_available; 
    std::atomic<bool> is_started; 
    std::thread *current_thread; 
 
 // Cascade 
 cv::CascadeClassifier *cascade_classifier; 
 cv::VideoCapture *video_capture; 
 std::atomic<double> center_x; 
 std::atomic<double> center_y; 
 std::atomic<double> area; 
 
 // Kalman Filter 
 static const int NUM_KF_STATE = 5; 
 static const int NUM_KF_MEASUREMENT = 2; 
 cv::KalmanFilter *kalman_filter; 
 cv::Mat_<float> measurement; 
 



 

162 

 // Debug Log 
 bool is_debug; 
 
 // Experiment Data Output 
 ofstream *output_real; 
 ofstream *output_predicted; 
 
    // Depth Camera 
    static const bool USE_DEPTH_CAMERA = true; 
    sl::zed::Camera *zed; 
public: 
 ofstream *output_vision_time; 
    static const int VISION_WIDTH = 1280; 
    static const int VISION_HEIGHT = 720; 
    /*static const int VISION_WIDTH = 640; 
    static const int VISION_HEIGHT = 480;*/ 
 
 RobotVision(); 
 bool init(cv::String cascadeFilePath); 
 bool init_kalman_filter(); 
    double detect_with_cascade_on_thread(double laser_angle_in_degree, bool 
*is_predicted); 
 bool detect_wtih_cascade_inline(double *center_x, double *area, double 
*center_y); 
 void correct_kalman_filter(double center_x, double center_y); 
}; 
#endif 

10.2.4 Robot_vision.cpp 

#include "robot_vision.h" 
 
RobotVision::RobotVision() { 
 is_data_available = false; 
 is_started = false; 
 is_debug = false; 
 
 output_real = new ofstream("robot_vision_cascade_real.txt"); 
 output_predicted = new 
ofstream("robot_vision_kalman_filter_predicted.txt"); 
 output_vision_time = new ofstream("output_vision_time.txt"); 
} 
 
bool RobotVision::init(cv::String cascadeFilePath) { 
 cascade_classifier = new cv::CascadeClassifier(); 
 if (!cascade_classifier->load(cascadeFilePath)) { 
  std::cout << "Error: There was an error when loading cascade xml 
file." << endl; 
  return false; 
 } 
 
    if (USE_DEPTH_CAMERA) { 
        zed = new sl::zed::Camera(sl::zed::HD720); 
        sl::zed::ERRCODE err = zed->init(sl::zed::MODE::PERFORMANCE, 0, true); 
 
        // Quit if an error occurred 
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        if (err != sl::zed::SUCCESS) { 
            std::cout << "Error: Unable to init the ZED:" << errcode2str(err) << 
std::endl; 
            delete zed; 
            return false; 
        } 
    } 
    else { 
        video_capture = new cv::VideoCapture(); 
        if (!video_capture->open(0)) { 
            std::cout << "Error: There was an error when opening camera." << endl; 
            return false; 
        } 
    } 
 
 kalman_filter = new cv::KalmanFilter(RobotVision::NUM_KF_STATE, 
RobotVision::NUM_KF_MEASUREMENT); 
 kalman_filter->transitionMatrix = ( 
  cv::Mat_<float>(5, 5) <<  
  1, 0, 1, 0, 0, // x 
  0, 1, 0, 1, 0, // y 
  0, 0, 1, 0, 1, // Vx 
  0, 0, 0, 1, 0, // Vy 
  0, 0, 0, 0, 1); // Ax 
 
 measurement = cv::Mat_<float>(2, 1); 
 measurement.setTo(cv::Scalar(0)); 
 return true; 
} 
 
void detect_with_cascade_raw(cv::VideoCapture *video_capture, sl::zed::Camera 
*zed, bool use_depth_camera, cv::CascadeClassifier *cascade_classifier, 
 std::atomic<bool> *is_data_available, std::atomic<double> *return_center_x, 
std::atomic<double> *return_center_y, 
 std::atomic<double> *return_area, bool is_debug) { 
 cv::Mat captureFrame, grayscaleFrame; 
 double area = 0, center = 0; 
 std::vector<cv::Rect> stops; 
 
    int NUM_OF_SPLITS = 3; 
    int *splits = new int[NUM_OF_SPLITS]; 
    int CLOSE_THRESHOLD = 245; 
    int area_left = 0, area_right = 0; 
 
    // Initialize all to 0 
    for (int i = 0; i < NUM_OF_SPLITS; i++) { 
        splits[i] = 0; 
    } 
 
 cv::namedWindow("outputCapture", 1); 
    if (use_depth_camera) { 
        int width = zed->getImageSize().width; 
        int height = zed->getImageSize().height; 
        cv::Mat image(height, width, CV_8UC4, 1); 
        cv::Mat depth(height, width, CV_8UC4, 1); 
 
        if (!zed->grab(sl::zed::SENSING_MODE::FULL)) 
        { 
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            // Retrieve left color image 
            sl::zed::Mat left = zed->retrieveImage(sl::zed::SIDE::LEFT); 
            memcpy(image.data, left.data, width * height * 4 * sizeof(uchar)); 
 
            // Retrieve depth map 
            sl::zed::Mat depthmap = zed-
>normalizeMeasure(sl::zed::MEASURE::DEPTH); 
            memcpy(depth.data, depthmap.data, width * height * 4 * sizeof(uchar)); 
 
            /*for (int i = 1; i < RobotVision::VISION_WIDTH; i++) { 
                for (int j = 1; j < RobotVision::VISION_HEIGHT; j++) { 
                    sl::uchar3 depth_value = depthmap.getValue(i, j); 
                    if (depth_value.c1 >= CLOSE_THRESHOLD && depth_value.c2 >= 
CLOSE_THRESHOLD && depth_value.c3 >= CLOSE_THRESHOLD) { 
                        for (int k = 1; k <= NUM_OF_SPLITS; k++) { 
                            if (i >= RobotVision::VISION_WIDTH / NUM_OF_SPLITS * 
(k - 1) && i < RobotVision::VISION_WIDTH / NUM_OF_SPLITS * k) { 
                                splits[k - 1] += 1; 
                            } 
                        } 
                    } 
                } 
            } 
             
            int max_split = -1; 
            for (int k = 1; k <= NUM_OF_SPLITS; k++) { 
                if (splits[k - 1] > max_split) { 
                    area_left = RobotVision::VISION_WIDTH / NUM_OF_SPLITS * (k - 
1); 
                    area_right = RobotVision::VISION_WIDTH / NUM_OF_SPLITS * k; 
                    max_split = splits[k - 1]; 
                } 
            }*/ 
 
            captureFrame = image; 
        } 
    } 
    else { 
        video_capture->read(captureFrame); 
    } 
 
 // No need to convert 
 //cvtColor(captureFrame, grayscaleFrame, CV_BGR2GRAY); 
 //equalizeHist(grayscaleFrame, grayscaleFrame); 
    /*std::cout << "Vision Image Size: " << captureFrame.rows << ", " << 
captureFrame.cols << std::endl;*/ 
 
    if (use_depth_camera) { 
        //cv::Rect temp(area_left, 1, 1280 / NUM_OF_SPLITS, 719); 
        //grayscaleFrame = captureFrame(temp); 
        grayscaleFrame = captureFrame.clone(); 
    } 
    else { 
        grayscaleFrame = captureFrame.clone(); 
    } 
 
 cascade_classifier->detectMultiScale(grayscaleFrame, stops, 1.05, 3, 
CV_HAAR_FIND_BIGGEST_OBJECT | CV_HAAR_SCALE_IMAGE, cv::Size(60, 60)); 
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 if (stops.empty()) { 
  //std::cout << "Info: Did not detect the object!" << endl; 
  (*return_center_x) = -1.0; 
  (*return_center_y) = -1.0; 
  *is_data_available = true; 
 // cv::imshow("outputCapture", captureFrame); 
  cv::waitKey(1); 
  return; 
 } 
 
 double tmpArea = 0; 
 double temp_center_x = 9999; 
 for (int i = 0; i < stops.size(); i++) { 
  cv::Point pt1(area_left + stops[i].x + stops[i].width, stops[i].y + 
stops[i].height); 
  cv::Point pt2(area_left + stops[i].x, stops[i].y); 
  rectangle(captureFrame, pt1, pt2, cvScalar(0, 255, 0, 0), 1, 8, 0); 
  if (stops[i].x < temp_center_x) { 
   temp_center_x = area_left + stops[i].x; 
   // This is very important, need to calculate the center of the 
detected image, instead of left-up corner 
   (*return_center_x) = area_left + stops[i].x + stops[i].width / 
2; 
   (*return_center_y) = area_left + stops[i].y + stops[i].height 
/ 2; 
  } 
 } 
 
 cv::imshow("outputCapture", captureFrame); 
 cv::waitKey(1); 
 (*return_area) = tmpArea; 
 if (is_debug) { 
  std::cout << "Center: " << center << "; Area:" << area << std::endl; 
 } 
  
 *is_data_available = true; 
} 
 
bool RobotVision::detect_wtih_cascade_inline(double *return_center_x, double 
*return_area, double *return_center_y) { 
 std::atomic<double> init_center_x = -1.0; 
 std::atomic<double> init_center_y = -1.0; 
 std::atomic<double> init_return_area = -1.0; 
 std::atomic<bool> init_is_data_available = false; 
 clock_t timer_start, timer_end; 
 
 timer_start = clock(); 
 detect_with_cascade_raw(video_capture, zed, USE_DEPTH_CAMERA, 
cascade_classifier, &init_is_data_available, 
  &init_center_x, &init_center_y, &init_return_area, is_debug); 
 
 if (is_debug) { 
  timer_end = clock(); 
  //std::cout << "It takes " << RobotUtil::get_diff_in_ms(timer_start, 
timer_end) << " ms for vision to execute once." << std::endl; 
 } 
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 (*return_center_x) = init_center_x; 
 (*return_center_y) = init_center_y; 
 (*return_area) = init_return_area; 
 
 if (init_center_x < 0) { 
  return false; 
 } 
 return true; 
} 
 
void detect_with_cascade_raw_loop(RobotVision *vision, std::atomic<double> 
*return_center_x, std::atomic<double> *return_center_y,  
 std::atomic<double> *return_area, std::atomic<bool> *is_data_available, 
double laser_angle_in_degree) { 
 
 double vision_area = 0; 
 double vision_center_x = 0; 
 double vision_center_y = 0; 
 long temp_vision_time_start = RobotUtil::get_current_time_in_ms(); 
 boolean result = false; 
 
 while (true) { 
  temp_vision_time_start = RobotUtil::get_current_time_in_ms(); 
  result = vision->detect_wtih_cascade_inline(&vision_center_x, 
&vision_area, &vision_center_y); 
  (*vision->output_vision_time) << RobotUtil::get_current_time_in_ms() 
<< " " << (RobotUtil::get_current_time_in_ms() - temp_vision_time_start) << endl; 
  if (result) { 
   break; 
  } 
 } 
 
 (*return_center_x) = vision_center_x; 
 (*return_center_y) = vision_center_y; 
 (*return_area) = vision_area; 
 (*is_data_available) = true; 
} 
 
bool RobotVision::init_kalman_filter() { 
 
 std::atomic<double> init_center_x = -1.0; 
 std::atomic<double> init_center_y = -1.0; 
 std::atomic<double> init_return_area = -1.0; 
 std::atomic<bool> init_is_data_available = false; 
 
 while (true) { 
  detect_with_cascade_raw(video_capture, zed, USE_DEPTH_CAMERA, 
cascade_classifier, &init_is_data_available, 
   &init_center_x, &init_center_y, &init_return_area, is_debug); 
  if (init_center_x > 0 && init_center_y > 0) { 
   (*output_real) << RobotUtil::get_current_time_in_ms() << " " 
<< init_center_x << endl; 
 
   kalman_filter->statePost.at<float>(0) = init_center_x; 
   kalman_filter->statePost.at<float>(1) = init_center_y; 
   kalman_filter->statePost.at<float>(2) = 0; 
   kalman_filter->statePost.at<float>(3) = 0; 
   kalman_filter->statePost.at<float>(4) = 0; 
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   setIdentity(kalman_filter->measurementMatrix); 
   setIdentity(kalman_filter->processNoiseCov, 
cv::Scalar::all(1e-4)); 
   setIdentity(kalman_filter->measurementNoiseCov, 
cv::Scalar::all(10)); 
   setIdentity(kalman_filter->errorCovPost, cv::Scalar::all(.1)); 
 
   //if (is_debug) { 
    cout << "Initializing vision kalman filter done: " << 
init_center_y << ", " << init_center_y << endl; 
   //} 
 
   return true; 
  } 
 } 
 
 return false; 
} 
 
void RobotVision::correct_kalman_filter(double center_x, double center_y) { 
 if (center_x > 0 && center_y > 0) { 
  measurement(0) = center_x; 
  measurement(1) = center_y; 
  kalman_filter->correct(measurement); 
 } 
} 
 
double RobotVision::detect_with_cascade_on_thread(double laser_angle_in_degree, 
bool *is_predicted) { 
    // If the image data is available 
    if (is_data_available) { 
        is_data_available = false; 
        is_started = false; 
        current_thread->join(); 
  (*is_predicted) = false; 
 
  (*output_real) << RobotUtil::get_current_time_in_ms() << " " << 
center_x << endl; 
  //cout << "Real" << endl; 
   
  if (center_x > 0 && center_y > 0) { 
   measurement(0) = center_x; 
   measurement(1) = center_y; 
   kalman_filter->correct(measurement); 
 
   if (is_debug) { 
   // cout << "Real Found, Correct KF: " << center_x << ", " 
<< center_y << endl; 
   } 
    
   return center_x; 
  } 
  else { 
   cv::Mat prediction = kalman_filter->predict(); 
 
   if (is_debug) { 
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   // cout << "Real Not Found, Use Predicted: " << 
prediction.at<float>(0) << ", " << prediction.at<float>(1) << endl; 
   } 
    
   return prediction.at<float>(0); 
  } 
    } 
    // If the image data is not available 
    else { 
        // If the thread of getting the data is not started 
        if (false == is_started) { 
            //current_thread = new std::thread(&detect_with_cascade_raw, 
video_capture, cascade_classifier, &is_data_available, &center_x, &center_y, 
&area, is_debug); 
   current_thread = new 
std::thread(&detect_with_cascade_raw_loop, this, &center_x, &center_y, &area, 
&is_data_available, laser_angle_in_degree); 
   is_started = true; 
        } 
 
  cv::Mat prediction = kalman_filter->predict(); 
  (*output_predicted) << RobotUtil::get_current_time_in_ms() << " " << 
prediction.at<float>(0) << endl; 
 // cout << "Predicted" << endl; 
 
  if (is_debug) { 
  // cout << "Predicted: " << prediction.at<float>(0) << ", " << 
prediction.at<float>(1) << endl; 
  } 
   
  (*is_predicted) = true; 
 
        return prediction.at<float>(0); 
    } 
} 

10.2.5 Robot_laser.h 

#ifndef ROBOT_LASER_H 
#define ROBOT_LASER_H 
 
#include <iostream> 
#include <thread> 
#include <atomic> 
#include <math.h> 
#include <fstream> 
#include "Urg_driver.h" 
#include "robot_util.h" 
#include "opencv2/video/tracking.hpp" 
using namespace qrk; 
using namespace std; 
 
class RobotLaser { 
private: 
 // MultiThread 
 std::atomic<bool> is_data_available; 
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 std::atomic<bool> is_started; 
 std::thread *current_thread; 
 
 // Laser Urg 
 std::atomic<double> _distance; 
 std::atomic<double> _laser_angle_in_degree; 
 
 // Kalman Filter 
 static const bool USE_KALMAN_FILTER = true; 
 static const int NUM_KF_STATE = 5; 
 static const int NUM_KF_MEASUREMENT = 2; 
 cv::KalmanFilter *kalman_filter; 
 cv::Mat_<float> measurement; 
    // If we put laser on thread, then we don't need to initialize the laser any 
more 
 bool is_kalman_filter_initialized = false; 
 
 // Experiment Data Output 
 ofstream *output_real; 
 ofstream *output_predicted; 
 ofstream *output_real_angle; 
 ofstream *output_predicted_angle; 
public: 
 Urg_driver *urg; 
 
 // Debug Log 
 bool is_debug; 
 
 static const Urg_driver::connection_type_t SERIAL_TYPE = 
Urg_driver::Serial; 
 static const Urg_driver::connection_type_t ETHERNET_TYPE = 
Urg_driver::Ethernet; 
 static const int URG_MIN_DEGREE = -120; 
 static const int URG_MAX_DEGREE = 120; 
 static const int URG_TOTAL_DEGREE = 240; 
 static const int URG_NUM_OF_DATA_POINTS_RETURNED = 682; 
 
 RobotLaser(); 
 bool init(); 
 bool init(Urg_driver::connection_type_t type); 
 bool init_kalman_filter(int start_angle, int end_angle, double 
*laser_angle_in_degree); 
 bool is_open(); 
 void close(); 
    double get_distance(int start_angle, int end_angle, double 
*laser_angle_in_degree); 
 double get_distance_on_thread(int start_angle, int end_angle, double 
*laser_angle_in_degree); 
}; 
#endif 

10.2.6 Robot_laser.cpp 

#include "robot_laser.h" 
 
RobotLaser::RobotLaser() { 
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 is_data_available = false; 
 is_started = false; 
 is_debug = true; 
 
 if (USE_KALMAN_FILTER) { 
  output_real = new ofstream("robot_laser_real.txt"); 
  output_predicted = new 
ofstream("robot_laser_kalman_filter_predicted.txt"); 
  output_real_angle = new ofstream("robot_laser_real_angle.txt"); 
  output_predicted_angle = new 
ofstream("robot_laser_kalman_filter_predicted_angle.txt"); 
 } 
} 
 
bool RobotLaser::init() { 
 if (USE_KALMAN_FILTER) { 
  kalman_filter = new cv::KalmanFilter(RobotLaser::NUM_KF_STATE, 
RobotLaser::NUM_KF_MEASUREMENT); 
  kalman_filter->transitionMatrix = ( 
   cv::Mat_<float>(5, 5) << 
   1, 1, 0, 0, 0,  // distance 
   0, 1, 1, 0, 0,  // Vx 
   0, 0, 1, 0, 0,  // Ax 
   0, 0, 0, 1, 1,  // laser angle 
   0, 0, 0, 0, 1); // laser angle change speed 
 
  measurement = cv::Mat_<float>(2, 1); 
  measurement.setTo(cv::Scalar(0)); 
 } 
 
 return init(RobotLaser::SERIAL_TYPE); 
} 
 
bool RobotLaser::init(Urg_driver::connection_type_t type) { 
 urg = new Urg_driver(); 
 const char *device_name; 
 int baudrate_or_port; 
 
 if (type == Urg_driver::Serial) { 
  device_name = "COM3"; 
  baudrate_or_port = 115200; 
 } 
 else if (type == Urg_driver::Ethernet) { 
  device_name = "192.168.0.10"; 
  baudrate_or_port = 10940; 
 } 
 else { 
  cout << "Error: Wrong Urg_driver connection type." << endl; 
  return false; 
 } 
 
 if (urg->is_open()) { 
  urg->close(); 
 } 
 
 if (!urg->open(device_name, baudrate_or_port, type)) { 
  cout << "Error: There was an error when executing 
Urg_driver::open(): " << urg->what() << endl; 
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  return false; 
 } 
 
 return true; 
} 
 
bool RobotLaser::is_open() { 
 return urg->is_open(); 
} 
 
void RobotLaser::close() { 
 urg->close(); 
} 
 
double RobotLaser::get_distance(int start_angle, int end_angle, double 
*laser_angle_in_degree) { 
 // Urg laser device will return 682 data points 
 // The scan range of Urg laser device is -120 degree to 120 degree 
 
 if (start_angle > RobotLaser::URG_MAX_DEGREE 
  || start_angle < RobotLaser::URG_MIN_DEGREE 
  || end_angle > RobotLaser::URG_MAX_DEGREE 
  || end_angle < RobotLaser::URG_MIN_DEGREE 
  || start_angle > end_angle) { 
  cout << "Error: Invalid input range. Range should be within -120 
degree to 120 degree." << endl; 
  return -1.0; 
 } 
 
 clock_t timer_start, timer_end; 
 timer_start = clock(); 
 
 urg->start_measurement(Urg_driver::Distance, 1, 0); 
 
 vector<long> data; 
 long time_stamp = 0; 
 if (!urg->get_distance(data, &time_stamp)) { 
  cout << "Error: There was an error when executing 
Urg_driver::get_distance(): " << urg->what() << endl; 
  urg->close(); 
  return -1.0; 
 } 
 
 double degree_per_points = RobotLaser::URG_TOTAL_DEGREE * 1.0 / 
RobotLaser::URG_NUM_OF_DATA_POINTS_RETURNED; 
 double degree_counter = -120.0; 
 double min_distance = 99999.0; 
 int min_distance_data_point_index = -1; 
 double min_distance_degree = 0.0; 
 for (int i = 0; i < data.size(); i++) { 
  if (degree_counter > start_angle && degree_counter < end_angle) { 
   if (data[i] > 50 && data[i] < min_distance) { 
    min_distance_data_point_index = i; 
    min_distance_degree = degree_counter; 
    min_distance = data[i]; 
   } 
  } 
  degree_counter += degree_per_points; 
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 } 
 
 if (min_distance_data_point_index == -1) { 
  cout << "Error: Cannot find the closest distance." << endl; 
  return -1.0; 
 } 
 
 if (is_debug) { 
  //cout << "Found the closest distance: " << min_distance << " at " 
<< min_distance_degree 
  //<< " degree with data point index [" << 
min_distance_data_point_index << "]." << endl; 
  timer_end = clock(); 
 // cout << "It takes " << RobotUtil::get_diff_in_ms(timer_start, 
timer_end) << " ms for laser measurement only." <<endl; 
 } 
 
 if (USE_KALMAN_FILTER) { 
  // Use Kalman Filter to correct distance 
  if (is_kalman_filter_initialized) { 
   measurement(0) = min_distance; 
   measurement(1) = min_distance_degree; 
   kalman_filter->correct(measurement); 
   cv::Mat prediction = kalman_filter->predict(); 
 
  // cout << "KalmanFilter revised distance: " << 
prediction.at<float>(0) << ", " << prediction.at<float>(1) << endl; 
 //  cout << "Original measured distance: " << min_distance << ", " 
<< min_distance_degree << endl; 
 
   (*output_predicted) << RobotUtil::get_current_time_in_ms() << 
" " << prediction.at<float>(0) << endl; 
   (*output_real) << RobotUtil::get_current_time_in_ms() << " " 
<< min_distance << endl; 
   (*output_predicted_angle) << 
RobotUtil::get_current_time_in_ms() << " " << prediction.at<float>(1) << endl; 
   (*output_real_angle) << RobotUtil::get_current_time_in_ms() << 
" " << min_distance_degree << endl; 
 
   min_distance = prediction.at<float>(0); 
   min_distance_degree = prediction.at<float>(1); 
  } 
 } 
 
 (*laser_angle_in_degree) = min_distance_degree; 
  
 return min_distance; 
} 
 
bool RobotLaser::init_kalman_filter(int start_angle, int end_angle, double 
*laser_angle_in_degree) { 
 
 if (USE_KALMAN_FILTER) { 
        if (false == is_open()) { 
            init(); 
        } 
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  double min_distance = get_distance(start_angle, end_angle, 
laser_angle_in_degree); 
 
  kalman_filter->statePost.at<float>(0) = min_distance; 
  kalman_filter->statePost.at<float>(1) = (*laser_angle_in_degree); 
  kalman_filter->statePost.at<float>(2) = 0; 
  kalman_filter->statePost.at<float>(3) = 0; 
  kalman_filter->statePost.at<float>(4) = 0; 
 
  setIdentity(kalman_filter->measurementMatrix); 
  setIdentity(kalman_filter->processNoiseCov, cv::Scalar::all(1e-4)); 
  setIdentity(kalman_filter->measurementNoiseCov, 
cv::Scalar::all(10)); 
  setIdentity(kalman_filter->errorCovPost, cv::Scalar::all(.1)); 
 
  cout << "Initializing laser kalman filter done: " << min_distance << 
", " << (*laser_angle_in_degree) << endl; 
  (*output_real) << RobotUtil::get_current_time_in_ms() << " " << 
min_distance << endl; 
  (*output_real_angle) << RobotUtil::get_current_time_in_ms() << " " 
<< (*laser_angle_in_degree) << endl; 
 
  is_kalman_filter_initialized = true; 
 } 
 
 return true; 
} 
 
void get_distance_raw(RobotLaser *laser, int start_angle, int end_angle, 
std::atomic<bool> *is_data_available,  
 std::atomic<double> *distance, std::atomic<double> *laser_angle_in_degree) 
{ 
 
 if (start_angle > RobotLaser::URG_MAX_DEGREE 
  || start_angle < RobotLaser::URG_MIN_DEGREE 
  || end_angle > RobotLaser::URG_MAX_DEGREE 
  || end_angle < RobotLaser::URG_MIN_DEGREE 
  || start_angle > end_angle) { 
  cout << "Error: Invalid input range. Range should be within -120 
degree to 120 degree." << endl; 
  (*is_data_available) = true; 
  (*distance) = -1.0; 
  (*laser_angle_in_degree) = -1.0; 
  return; 
 } 
 
 clock_t timer_start, timer_end; 
 timer_start = clock(); 
 
 laser->urg->start_measurement(Urg_driver::Distance, 1, 0); 
 
 vector<long> data; 
 long time_stamp = 0; 
 if (!laser->urg->get_distance(data, &time_stamp)) { 
  cout << "Error: There was an error when executing 
Urg_driver::get_distance(): " << laser->urg->what() << endl; 
  (*is_data_available) = true; 
  (*distance) = -1.0; 
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  (*laser_angle_in_degree) = -1.0; 
  laser->urg->close(); 
  return; 
 } 
 
 double degree_per_points = RobotLaser::URG_TOTAL_DEGREE * 1.0 / 
RobotLaser::URG_NUM_OF_DATA_POINTS_RETURNED; 
 double degree_counter = -120.0; 
 double min_distance = 99999.0; 
 int min_distance_data_point_index = -1; 
 double min_distance_degree = 0.0; 
 for (int i = 0; i < data.size(); i++) { 
  if (degree_counter > start_angle && degree_counter < end_angle) { 
   if (data[i] > 50 && data[i] < min_distance) { 
    min_distance_data_point_index = i; 
    min_distance_degree = degree_counter; 
    min_distance = data[i]; 
   } 
  } 
  degree_counter += degree_per_points; 
 } 
 
 if (min_distance_data_point_index == -1) { 
  cout << "Error: Cannot find the closest distance." << endl; 
  (*is_data_available) = true; 
  (*distance) = -1.0; 
  (*laser_angle_in_degree) = -1.0; 
  return; 
 } 
 
 if (laser->is_debug) { 
 // cout << "Found the closest distance: " << min_distance << " at " << 
min_distance_degree 
 //  << " degree with data point index [" << 
min_distance_data_point_index << "]." << endl; 
  timer_end = clock(); 
 // cout << "It takes " << RobotUtil::get_diff_in_ms(timer_start, 
timer_end) << " ms for laser measurement only." << endl; 
 } 
 
    (*is_data_available) = true; 
 (*distance) = min_distance; 
 (*laser_angle_in_degree) = min_distance_degree; 
} 
 
double RobotLaser::get_distance_on_thread(int start_angle, int end_angle, double 
*laser_angle_in_degree) { 
 // If the laser data is available 
 if (is_data_available) { 
  is_data_available = false; 
  is_started = false; 
  current_thread->join(); 
   
  if (_distance > 0 && _laser_angle_in_degree > 0) { 
            if (USE_KALMAN_FILTER) { 
                measurement(0) = _distance; 
                measurement(1) = _laser_angle_in_degree; 
                kalman_filter->correct(measurement); 
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                if (is_debug) { 
        //            cout << "Real Found, Correct KF: " << _distance << ", " << 
_laser_angle_in_degree << endl; 
                } 
            } 
 
   (*output_real) << RobotUtil::get_current_time_in_ms() << " " 
<< _distance << endl; 
   (*output_real_angle) << RobotUtil::get_current_time_in_ms() << 
" " << _laser_angle_in_degree << endl; 
 
   (*laser_angle_in_degree) = _laser_angle_in_degree; 
   return _distance; 
  } 
  else { 
            if (USE_KALMAN_FILTER) { 
                cv::Mat prediction = kalman_filter->predict(); 
 
                if (is_debug) { 
            //        cout << "Real Not Found, Use Predicted: " << 
prediction.at<float>(0) << ", " << prediction.at<float>(1) << endl; 
                } 
 
                (*output_predicted) << RobotUtil::get_current_time_in_ms() << " " 
<< prediction.at<float>(0) << endl; 
                (*output_predicted_angle) << RobotUtil::get_current_time_in_ms() 
<< " " << prediction.at<float>(1) << endl; 
 
                (*laser_angle_in_degree) = prediction.at<float>(1); 
                return prediction.at<float>(0); 
            } 
            else { 
                (*laser_angle_in_degree) = _laser_angle_in_degree; 
                return _distance; 
            } 
  } 
 
  return _distance; 
 } 
 // If the laser data is not available 
 else { 
  // If the thread of getting the data is not started 
  if (false == is_started) { 
   current_thread = new std::thread(&get_distance_raw, this, 
start_angle, end_angle, &is_data_available, &_distance, &_laser_angle_in_degree); 
   is_started = true; 
  } 
 
  cv::Mat prediction = kalman_filter->predict(); 
  (*output_predicted) << RobotUtil::get_current_time_in_ms() << " " << 
prediction.at<float>(0) << endl; 
  (*output_predicted_angle) << RobotUtil::get_current_time_in_ms() << 
" " << prediction.at<float>(1) << endl; 
 // cout << "Predicted" << endl; 
 
  if (is_debug) { 
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  // cout << "Predicted: " << prediction.at<float>(0) << ", " << 
prediction.at<float>(1) << endl; 
  } 
 
  (*laser_angle_in_degree) = prediction.at<float>(1); 
  return prediction.at<float>(0); 
 } 
} 

10.2.7 Robot_bp.h 

#ifndef ROBOT_BP_H 
#define ROBOT_BP_H 
 
#include <iostream> 
using namespace std; 
 
class RobotBP { 
private: 
 int in_num; 
 int mid_num; 
 int out_num; 
 
 double **w; 
 double **v; 
 double *output; 
public: 
 RobotBP(int in_num, int mid_num, int out_num); 
 void predict(double distance, double imageX); 
 double* get_output(); 
}; 
#endif 

10.2.8 Robot_bp.cpp 

#include "robot_bp.h" 
 
RobotBP::RobotBP(int _in_num, int _mid_num, int _out_num) { 
 in_num = _in_num; 
 mid_num = _mid_num; 
 out_num = _out_num; 
} 
 
double* RobotBP::get_output() { 
 return output; 
} 
 
void RobotBP::predict(double distance, double imageX) { 
 double x[2];  //input layers 
 double H[100]; //hidden layers 
 
       //data pre-processing 
       //too close: 0-200; close: 200-400; center: 400-800; 
far: 800-1200; too far: 1200-5000 
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 if (distance <= 200 && distance >= 0) 
  x[0] = 4; 
 else if (distance <= 400 && distance > 200) 
  x[0] = 3; 
 else if (distance <= 800 && distance > 400) 
  x[0] = 2; 
 else if (distance <= 1200 && distance > 800) 
  x[0] = 1; 
 else if (distance <= 5000 && distance > 1000) 
  x[0] = 0; 
 
 //too left: 0-140; left: 140-220; center: 220-420; right: 420-500; too 
right: 500-640 
 if (imageX <= 140 && imageX >= 0) 
  x[1] = 0; 
 else if (imageX <= 220 && imageX > 140) 
  x[1] = 1; 
 else if (imageX <= 420 && imageX > 220) 
  x[1] = 2; 
 else if (imageX <= 500 && imageX > 420) 
  x[1] = 3; 
 else if (imageX <= 640 && imageX > 500) 
  x[1] = 4; 
 
 
 //display status 
 cout << "distance=" << x[0] << "   " << "image location=" << x[1] << "\n"; 
 
 // calculate the outputs of the hidden units 
 for (int i = 0; i < 100; i++) 
 { 
  double sum = 0; 
  for (int j = 0; j < 2; j++) 
  { 
   sum = sum + x[j] * w[j][i]; 
  } 
  H[i] = 1 / (1 + exp(-sum)); 
 } 
 
 //caculate the outputs of the output layer 
 for (int i = 0; i < 10; i++) 
 { 
  double sum = 0; 
  for (int j = 0; j < 100; j++) 
  { 
   sum = sum + H[j] * v[j][i]; 
  } 
  output[i] = sum; 
  cout << "number " << i << " is " << output[i] << endl; 
 } 
} 
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